We are developing an app that uses Authentication Services to authenticate users. According to the documentation, this framework will open the default web browser if it supports auth session handling, and Safari otherwise. This is not entirely true, and users will be frustrated!
macOS version: Sequoia 15.5; Safari version: 18.5.
When:
The default browser is not Safari, and supports auth session handling (Google Chrome and Microsoft Edge as examples); and -
The Safari app is already running;
The auth flow will:
Present the confirmation dialog box with the default browser icon. Good!
Open a Safari window, instead of the default browser's one. Bad!
Respond with "User Cancelled" error to the app, after making the end user believe the auth was good. Very Bad!!
If the app retries the auth session, the default browser window will open as expected, and it will work as expected.
However, requiring users to authenticate twice is a very bad users experience...
This issue does not reproduce, when either:
Safari is not running at the moment of auth session start;
The default browser does not support auth session handling; or -
Safari is the default browser.
Fellow developers, be warned!
Apple engineers, feedback #18426939 is waiting for you.
Cheers!
General
RSS for tagPrioritize user privacy and data security in your app. Discuss best practices for data handling, user consent, and security measures to protect user information.
Selecting any option will automatically load the page
Post
Replies
Boosts
Views
Activity
I want to use incrementalUpdates for my app but store always returns false on my iPad with OS18.3.2.
I want to know what are th conditions in which store says its unable to perform incrementalUpdates?
When developing and testing using my phone I got prompted for allowing app tracking. I later uploaded a build to TestFlight, deleted the old testing app and installed the TestFlight build. I am now stuck in an infinite loop of not getting prompted for allowing app tracking for the app. When entering the app settings the toggle for tracking never appears which leaves me not able to enter the app's content. My guess is that the prompt can only be shown once for the app bundle, but there has to be a way for me to get prompted again without changing the app bundle id. Help is appreciated since this app is scheduled to be published in a week.
I noticed, that even though my AutoFill Credential Provider Extension works with Safari for both Passwords and Passkeys, it doesn't work in context menus inside arbitrary textfields, meanwhile the same is true for the Apple Passwords app. This is a great hit to AutoFill productivity, as my extension is unable to fill textfields by just going to the context menu and clicking AutoFill > Passwords..
Is this a feature only available to Apple via private APIs, or is this something I can interface with?
I checked and the Passwords app does use some undocumented but non-private entitlements:
[Key] com.apple.authentication-services.access-credential-identities
[Value]
[Bool] true
I also checked the responsible executable for some hints (AutoFillPanelService) however found nothing that would lead me to believe this is a public extension point.
Another idea I had was trying to use a macOS Service for this, however Services in the "General" category won't show up in any context menu, only in the Application's Main Menu.
Hi,
I am developing a Platform SSO in order to have integrated with our IdP, which I am also adapting to provide the right endpoints for Platform SSO.
I have a few questions about the implementation:
does the client-request-id need to be present on all requests? Is it unique per request, or requests that are bound together like those requesting a nonce and those who will use that nonce should use the same client-request-id?
I am not sure how the loginManager.presentRegistrationViewController works. I'd like to get the user to authenticate to my IdP before device registration. So I am not sure if I should provide my own Webview or something similar or if this method should do something for me;
My idea is to request user authentication once, save the state when performing device registration, so that I avoid asking for user authentication twice when performing user registration. Is this the right way to do it?
How does platform SSO handles tokens? If one application of my IdP requests the authentication on a common OIDC/OAuth2 flow, should I perform some sort of token exchange?
How about SAML? Platform SSO seems to be token-centric, but how does one handle SAML flows? Is it by using WebView as well?
Hi,
I'm looking at adding App Attest to an app, and I think I understand the mechanics of the attestation process, but I'm having trouble figuring out how development and testing are supposed to work.
Two main questions:
The "App Attest Environment" -- the documentation says that attestation requests made in the .development sandbox environment don't affect the app's risk metrics, but I'm not sure how to actually use this sandbox. My understanding is that one of the things App Attest does is to ensure that your app has been appropriately signed by the App Store, so it knows that it hasn't been tampered with. But the docs say that App Store builds (and Test Flight and Developer Enterprise Program) always use the .production environment. Does App Attest actually work for local developer-build apps if you have this entitlement set? Presumably only on hardware devices since it requires the Secure Enclave?
Does our headend have to do something different when verifying the public key and subsequent attested requests for an app that's using the .development sandbox? The docs do mention that a headend server should potentially track two keys per device/user pair so that it can have a production and development key. How does the headend know if a key is from the sandbox environment?
Thanks!
I don't know why? 🤷 My uuid and imi as well as ip have been leaked, I don't know what to do? Can someone help me?
Topic:
Privacy & Security
SubTopic:
General
Tags:
Foundation
App Tracking Transparency
Files and Storage
Security
General:
Forums subtopic: Privacy & Security > General
Forums tag: App Sandbox
App Sandbox documentation
App Sandbox Design Guide documentation — This is no longer available from Apple. There’s still some info in there that isn’t covered by the current docs but, with the latest updates, it’s pretty minimal (r. 110052019). Still, if you’re curious, you can consult an old copy [1].
App Sandbox Temporary Exception Entitlements archived documentation — To better understand the role of temporary exception entitlements, see this post.
Embedding a command-line tool in a sandboxed app documentation
Discovering and diagnosing App Sandbox violations (replaces the Viewing Sandbox Violation Reports forums post)
Resolving App Sandbox Inheritance Problems forums post
The Case for Sandboxing a Directly Distributed App forums post
Implementing Script Attachment in a Sandboxed App forums post
Share and Enjoy
—
Quinn “The Eskimo!” @ Developer Technical Support @ Apple
let myEmail = "eskimo" + "1" + "@" + "apple.com"
[1] For example, this one archived by the Wayback Machine.
Our company developed an app that relies on the collected list to display the phone's label in the list when the user's phone receives an incoming call. However, we have been rejected. The main reason for the rejection is as follows:
“ Guideline 1.1.6 - Safety - Objectionable Content
The app still allows users to unblock and reveal blocked incoming numbers to identify the individual calling or texting, which is not appropriate. Specifically, your app claims to offer the call blocking functionality, but solely identifies numbers that the user has explicitly blocked themselves.
Since users can choose to hide their caller ID in iPhone Settings, apps should not attempt to circumvent this iOS feature to reveal the caller's number. ”
But our developers clearly stated that there is no way to bypass these settings, and CallDirectory Extensionde cannot directly "unlock hidden numbers" or bypass the built-in restrictions of IOS. We don't know how to solve this problem next, and hope to get everyone's help.
Topic:
Privacy & Security
SubTopic:
General
Hi,
We are trying to open an application "xyz.app"
It worked fine until 15.1.1 versions. But facing issues with 15.2 and 15.3
The application is working fine when we navigate to xyz.app/Contents/MacOS/ and run applet in this directory.
But the error ""Not authorized to send Apple events to Finder"" occurs when we are trying to open the app directly.
Could someone please help me understand what might be causing this issue and how to resolve it?
Topic:
Privacy & Security
SubTopic:
General
AFAIU a new screen capture notification was added within the Control Center in Sequoia 15.2, see attached examples:
My question is whether there is some way to suppress this notification preferably via an MDM configuration profile.
See also https://discussions.apple.com/thread/255886645?sortBy=rank for more information.
Thanks,
Doron.
I regularly see folks confused by the difference in behaviour of app groups between macOS and iOS. There have been substantial changes in this space recently. While much of this is now covered in the official docs (r. 92322409), I’ve updated this post to go into all the gory details.
If you have questions or comments, start a new thread with the details. Put it in the App & System Services > Core OS topic area and tag it with Code Signing and Entitlements. Oh, and if your question is about app group containers, also include Files and Storage.
Share and Enjoy
—
Quinn “The Eskimo!” @ Developer Technical Support @ Apple
let myEmail = "eskimo" + "1" + "@" + "apple.com"
App Groups: macOS vs iOS: Working Towards Harmony
There are two styles of app group ID:
iOS-style app group IDs start with group., for example, group.eskimo1.test.
macOS-style app group IDs start with your Team ID, for example, SKMME9E2Y8.eskimo1.test.
This difference has been the source of numerous weird problems over the years. Starting in Feb 2025, iOS-style app group IDs are fully supported on macOS for all product types [1]. If you’re writing new code that uses app groups, use an iOS-style app group ID. If you have existing code that uses a macOS-style app group ID, consider how you might transition to the iOS style.
IMPORTANT The Feb 2025 changes aren’t tied to an OS release but rather to a Developer website update. For more on this, see Feb 2025 Changes, below.
[1] If your product is a standalone executable, like a daemon or agent, wrap it in an app-like structure, as explained in Signing a daemon with a restricted entitlement.
iOS-Style App Group IDs
An iOS-style app group ID has the following features:
It starts with the group. prefix, for example, group.eskimo1.test.
You allocate it on the Developer website. This assigns the app group ID to your team.
You then claim access to it by listing it in the App Groups entitlement (com.apple.security.application-groups) entitlement.
That claim must be authorised by a provisioning profile [1]. The Developer website will only let you include your team’s app group IDs in your profile.
For more background on provisioning profiles, see TN3125 Inside Code Signing: Provisioning Profiles.
iOS-style app group IDs originated on iOS with iOS 3.0. They’ve always been supported on iOS’s child platforms (iPadOS, tvOS, visionOS, and watchOS). On the Mac:
They’ve been supported by Mac Catalyst since that technology was introduced.
Likewise for iOS Apps on Mac.
Starting in Feb 2025, they’re supported for other Mac products.
[1] Strictly speaking macOS does not require that, but if your claim is not authorised by a profile then you might run into other problems. See Entitlements-Validated Flag, below.
macOS-Style App Group IDs
A macOS-style app group ID has the following features:
It should start with your Team ID [1], for example, SKMME9E2Y8.eskimo1.test.
It can’t be explicitly allocated on the Developer website.
Code that isn’t sandboxed doesn’t need to claim the app group ID in the App Groups entitlement. [2]
To use an app group, claim the app group ID in the App Groups entitlement.
The App Groups entitlement is not restricted on macOS, meaning that this claim doesn’t need to be authorised by a provisioning profile [3].
However, if you claim an app group ID that’s not authorised in some way, you might run into problems. More on that later in this post.
If you submit an app to the Mac App Store, the submission process checks that your app group IDs make sense, that is, they either start with your Team ID (macOS style) or are assigned to your team (iOS style).
[1] This is “should” because, historically, macOS has not actually required it. However, that’s now changing, with things like app group container protection.
[2] This was true prior to macOS 15. It may still technically be true in macOS 15 and later, but the most important thing, access to the app group container, requires the entitlement because of app group container protection.
[3] Technically it’s a validation-required entitlement, something that we’ll come back to in the Entitlements-Validated Flag section.
Feb 2025 Changes
On 21 Feb 2025 we rolled out a change to the Developer website that completes the support for iOS-style app group IDs on the Mac. Specifically, it’s now possible to create a Mac provisioning profile that authorises the use of an iOS-style app group ID.
Note This change doesn’t affect Mac Catalyst or iOS Apps on Mac, which have always been able to use iOS-style app group IDs on the Mac.
Prior to this change it was possible to use an iOS-style app group ID on the Mac but that might result in some weird behaviour. Later sections of this post describe some of those problems. Of course, that information is now only of historical interest because, if you’re using an iOS-style app group, you can and should authorise that use with a provisioning profile.
We also started seeding Xcode 16.3, which has since been release. This is aware of the Developer website change, and its Signing & Capabilities editor actively encourages you to use iOS-style app groups IDs in all products.
Note This Xcode behaviour is the only option for iOS and its child platforms. With Xcode 16.3, it’s now the default for macOS as well. If you have existing project, enable this behaviour using the Register App Groups build setting.
Finally, we updated a number of app group documentation pages, including App Groups entitlement and Configuring app groups.
Crossing the Streams
In some circumstances you might need to have a single app that accesses both an iOS- and a macOS-style app group. For example:
You have a macOS app.
You want to migrate to an iOS-style app group ID, perhaps because you want to share an app group container with a Mac Catalyst app.
But you also need to access existing content in a container identified by a macOS-style app group ID.
Historically this caused problems (FB16664827) but, as of Jun 2025, this is fully supported (r. 148552377).
When the Developer website generates a Mac provisioning profile for an App ID with the App Groups capability, it automatically adds TEAM_ID.* to the list of app group IDs authorised by that profile (where TEAM_ID is your Team ID). This allows the app to claim access to every iOS-style app group ID associated with the App ID and any macOS-style app group IDs for that team. This helps in two circumstances:
It avoids any Mac App Store Connect submission problems, because App Store Connect can see that the app’s profile authorises its use of all the it app group IDs it claims access to.
Outside of App Store — for example, when you directly distribute an app using Developer ID signing — you no longer have to rely on macOS granting implicit access to macOS-style app group IDs. Rather, such access is explicitly authorised by your profile. That ensures that your entitlements remain validated, as discussed in the Entitlements-Validated Flag, below.
A Historical Interlude
These different styles of app group IDs have historical roots:
On iOS, third-party apps have always used provisioning profiles, and thus the App Groups entitlement is restricted just like any other entitlement.
On macOS, support for app groups was introduced before macOS had general support for provisioning profiles [1], and thus the App Groups entitlement is unrestricted.
The unrestricted nature of this entitlement poses two problems. The first is accidental collisions. How do you prevent folks from accidentally using an app group ID that’s in use by some other developer?
On iOS this is easy: The Developer website assigns each app group ID to a specific team, which guarantees uniqueness. macOS achieved a similar result by using the Team ID as a prefix.
The second problem is malicious reuse. How do you prevent a Mac app from accessing the app group containers of some other team?
Again, this isn’t an issue on iOS because the App Groups entitlement is restricted. On macOS the solution was for the Mac App Store to prevent you from publishing an app that used an app group ID that’s used by another team.
However, this only works for Mac App Store apps. Directly distributed apps were free to access app group containers of any other app. That was considered acceptable back when the Mac App Store was first introduced. That’s no longer the case, which is why macOS 15 introduced app group container protection. See App Group Container Protection, below.
[1] I’m specifically talking about provisioning profiles for directly distributed apps, that is, apps using Developer ID signing.
Entitlements-Validated Flag
The fact that the App Groups entitlement is unrestricted on macOS is, when you think about it, a little odd. The purpose of entitlements is to gate access to functionality. If an entitlement isn’t restricted, it’s not much of a gate!
For most unrestricted entitlements that’s not a problem. Specifically, for both the App Sandbox and Hardened Runtime entitlements, those are things you opt in to, so macOS is happy to accept the entitlement at face value. After all, if you want to cheat you can just not opt in [1].
However, this isn’t the case for the App Groups entitlement, which actually gates access to functionality. Dealing with this requires macOS to walk a fine line between security and compatibility. Part of that solution is the entitlements-validated flag.
When a process runs an executable, macOS checks its entitlements. There are two categories:
Restricted entitlements must be authorised by a provisioning profile. If your process runs an executable that claims a restricted entitlement that’s not authorised by a profile, the system traps.
Unrestricted entitlements don’t have to be authorised by a provisioning profile; they can be used by any code at any time.
However, the App Groups entitlement is a special type of unrestricted entitlement called a validation-required entitlement. If a process runs an executable that claims a validation-required entitlement and that claim is not authorised by a profile, the system allows the process to continue running but clears its entitlements-validated flag.
Some subsystems gate functionality on the entitlements-validated flag. For example, the data protection keychain uses entitlements as part of its access control model, but refuses to honour those entitlements if the entitlement-validated flag has been cleared.
Note If you’re curious about this flag, use the procinfo subcommand of launchctl to view it. For example:
% sudo launchctl procinfo `pgrep Test20230126`
…
code signing info = valid
…
entitlements validated
…
If the flag has been cleared, this line will be missing from the code signing info section.
Historically this was a serious problem because it prevented you from creating an app that uses both app groups and the data protection keychain [2] (r. 104859788). Fortunately that’s no longer an issue because the Developer website now lets you include the App Groups entitlement in macOS provisioning profiles.
[1] From the perspective of macOS checking entitlements at runtime. There are other checks:
The App Sandbox is mandatory for Mac App Store apps, but that’s checked when you upload the app to App Store Connect.
Directly distributed apps must be notarised to pass Gatekeeper, and the notary service requires that all executables enable the hardened runtime.
[2] See TN3137 On Mac keychain APIs and implementations for more about the data protection keychain.
App Groups and the Keychain
The differences described above explain a historical oddity associated with keychain access. The Sharing access to keychain items among a collection of apps article says:
Application groups
When you collect related apps into an application group using
the App Groups entitlement, they share access to a
group container, and gain the ability to message each other in
certain ways. You can use app group names as keychain access
group names, without adding them to the Keychain Access Groups
entitlement.
On iOS this makes a lot of sense:
The App Groups entitlement is a restricted entitlement on iOS.
The Developer website assigns each iOS-style app group ID to a specific team, which guarantees uniqueness.
The required group. prefix means that these keychain access groups can’t collide with other keychain access groups, which all start with an App ID prefix (there’s also Apple-only keychain access groups that start with other prefixes, like apple).
However, this didn’t work on macOS [1] because the App Groups entitlement is unrestricted there. However, with the Feb 2025 changes it should now be possible to use an iOS-style app group ID as a keychain access group on macOS.
Note I say “should” because I’ve not actually tried it (-:
Keep in mind that standard keychain access groups are protected the same way on all platforms, using the restricted Keychain Access Groups entitlement (keychain-access-groups).
[1] Except for Mac Catalyst apps and iOS Apps on Mac.
Not Entirely Unsatisfied
When you launch a Mac app that uses app groups you might see this log entry:
type: error
time: 10:41:35.858009+0000
process: taskgated-helper
subsystem: com.apple.ManagedClient
category: ProvisioningProfiles
message: com.example.apple-samplecode.Test92322409: Unsatisfied entitlements: com.apple.security.application-groups
Note The exact format of that log entry, and the circumstances under which it’s generated, varies by platform. On macOS 13.0.1 I was able to generate it by running a sandboxed app that claims a macOS-style app group ID in the App Groups entitlement and also claims some other restricted entitlement.
This looks kinda worrying and can be the source of problems. It means that the App Groups entitlement claims an entitlement that’s not authorised by a provisioning profile. On iOS this would trap, but on macOS the system allows the process to continue running. It does, however, clear the entitlements-validate flag. See Entitlements-Validated Flag for an in-depth discussion of this.
The easiest way to avoid this problem is to authorise your app group ID claims with a provisioning profile. If there’s some reason you can’t do that, watch out for potential problems with:
The data protection keychain — See the discussion of that in the Entitlements-Validated Flag and App Groups and the Keychain sections, both above.
App group container protection — See App Group Container Protection, below.
App Group Container Protection
macOS 15 introduced app group container protection. To access an app group container without user intervention:
Claim access to the app group by listing its ID in the App Groups entitlement.
Locate the container by calling the containerURL(forSecurityApplicationGroupIdentifier:) method.
Ensure that at least one of the following criteria are met:
Your app is deployed via the Mac App Store (A).
Or via TestFlight when running on macOS 15.1 or later (B).
Or the app group ID starts with your app’s Team ID (C).
Or your app’s claim to the app group is authorised by a provisioning profile embedded in the app (D) [1].
If your app doesn’t follow these rules, the system prompts the user to approve its access to the container. If granted, that consent applies only for the duration of that app instance.
For more on this, see:
The System Integrity Protection section of the macOS Sequoia 15 Release Notes
The System Integrity Protection section of the macOS Sequoia 15.1 Release Notes
WWDC 2024 Session 10123 What’s new in privacy, starting at 12:23
The above criteria mean that you rarely run into the app group authorisation prompt. If you encounter a case where that happens, feel free to start a thread here on DevForums. See the top of this post for info on the topic and tags to use.
Note Prior to the Feb 2025 change, things generally worked out fine when you app was deployed but you might’ve run into problems during development. That’s no longer the case.
[1] This is what allows Mac Catalyst and iOS Apps on Mac to work.
Revision History
2025-08-12 Added a reference to the Register App Groups build setting.
2025-07-28 Updated the Crossing the Streams section for the Jun 2025 change. Made other minor editorial changes.
2025-04-16 Rewrote the document now that iOS-style app group IDs are fully supported on the Mac. Changed the title from App Groups: macOS vs iOS: Fight! to App Groups: macOS vs iOS: Working Towards Harmony
2025-02-25 Fixed the Xcode version number mentioned in yesterday’s update.
2025-02-24 Added a quick update about the iOS-style app group IDs on macOS issue.
2024-11-05 Further clarified app group container protection. Reworked some other sections to account for this new reality.
2024-10-29 Clarified the points in App Group Container Protection.
2024-10-23 Fleshed out the discussion of app group container protection on macOS 15.
2024-09-04 Added information about app group container protection on macOS 15.
2023-01-31 Renamed the Not Entirely Unsatisfactory section to Not Entirely Unsatisfied. Updated it to describe the real impact of that log message.
2022-12-12 First posted.
I am experiencing an issue with Apple Sign-In on Vision Pro. When I build and run the app from Xcode, everything works fine—after signing in, the app returns to the foreground as expected.
However, when I launch the app directly on Vision Pro (not from Xcode), after completing the sign-in process, the app does not reopen from the background automatically. Instead, it closes, and I have to manually tap the app icon to reopen it.
Has anyone else encountered this issue? Is there a way to ensure the app properly resumes after sign-in without requiring manual intervention?
My app has been rejected by App Store review because the sign in with Apple functionality is not working properly. I'm able to reproduce the issue on my end but I don't understand why it's happening.
I have two other apps that implement the same OAuth flow in an identical manner, and those apps have no issues signing in with Apple.
I've copied my OAuth flow to a fresh project to see if that would make a difference, and it gives me the exact same error. In the simulator I get "invalid_request, invalid web redirect URL", and on-device the FaceID authentication fails with a very non-specific "Sign Up Not Completed" error.
I'm completely out of ideas here, so any guidance would be appreciated. Thanks!
Hi Apple Developer Support,
I’m building a macOS app that acts as a default browser. I can confirm that I can set it correctly through System Settings → Default Web Browser.
The app implements ASWebAuthenticationSessionWebBrowserSessionHandling to intercept Single Sign-On (SSO) flows. To handle requests, it presents SSO pages in a WKWebView embedded in a window that this app creates and owns - this works perfectly for the initial login flow.
However, after I close my WebView window and then launch Safari or Chrome, any subsequent SSO requests open in the newly-launched browser instead of my custom browser, even though it remains selected as the default in System Settings.
I’d appreciate any insight on why the system “hands off” to Safari/Chrome in this scenario, and how I can keep my app consistently intercepting all ASWebAuthenticationSession requests.
Here are the steps that break down the issue:
Launch & confirm that the custom default browser app is the default browser in System Settings → Default Web Browser.
Trigger SSO (e.g., try to log in to Slack).
App’s WKWebView appears, and the SSO UI works end-to-end.
Close the WebView window (I have windowShouldClose callback where I cancel the pending session).
Manually launch Safari or Chrome.
Trigger SSO again. Observed behaviour: the login URL opens in Safari/Chrome.
I am using macOS 15.3.2
Script attachment enables advanced users to create powerful workflows that start in your app. NSUserScriptTask lets you implement script attachment even if your app is sandboxed. This post explains how to set that up.
IMPORTANT Most sandboxed apps are sandboxed because they ship on the Mac App Store [1]. While I don’t work for App Review, and thus can’t make definitive statements on their behalf, I want to be clear that NSUserScriptTask is intended to be used to implement script attachment, not as a general-purpose sandbox bypass mechanism.
If you have questions or comments, please put them in a new thread. Place it in the Privacy & Security > General subtopic, and tag it with App Sandbox.
Share and Enjoy
—
Quinn “The Eskimo!” @ Developer Technical Support @ Apple
let myEmail = "eskimo" + "1" + "@" + "apple.com"
[1] Most but not all. There are good reasons to sandbox your app even if you distribute it directly. See The Case for Sandboxing a Directly Distributed App.
Implementing Script Attachment in a Sandboxed App
Some apps support script attachment, that is, they allow a user to configure the app to run a script when a particular event occurs. For example:
A productivity app might let a user automate repetitive tasks by configuring a toolbar button to run a script.
A mail client might let a user add a script that processes incoming mail.
When adding script attachment to your app, consider whether your scripting mechanism is internal or external:
An internal script is one that only affects the state of the app.
A user script is one that operates as the user, that is, it can change the state of other apps or the system as a whole.
Supporting user scripts in a sandboxed app is a conundrum. The App Sandbox prevents your app from changing the state of other apps, but that’s exactly what your app needs to do to support user scripts.
NSUserScriptTask resolves this conundrum. Use it to run scripts that the user has placed in your app’s Script folder. Because these scripts were specifically installed by the user, their presence indicates user intent and the system runs them outside of your app’s sandbox.
Provide easy access to your app’s Script folder
Your application’s Scripts folder is hidden within ~/Library. To make it easier for the user to add scripts, add a button or menu item that uses NSWorkspace to show it in the Finder:
let scriptsDir = try FileManager.default.url(for: .applicationScriptsDirectory, in: .userDomainMask, appropriateFor: nil, create: true)
NSWorkspace.shared.activateFileViewerSelecting([scriptsDir])
Enumerate the available scripts
To show a list of scripts to the user, enumerate the Scripts folder:
let scriptsDir = try FileManager.default.url(for: .applicationScriptsDirectory, in: .userDomainMask, appropriateFor: nil, create: true)
let scriptURLs = try FileManager.default.contentsOfDirectory(at: scriptsDir, includingPropertiesForKeys: [.localizedNameKey])
let scriptNames = try scriptURLs.map { url in
return try url.resourceValues(forKeys: [.localizedNameKey]).localizedName!
}
This uses .localizedNameKey to get the name to display to the user. This takes care of various edge cases, for example, it removes the file name extension if it’s hidden.
Run a script
To run a script, instantiate an NSUserScriptTask object and call its execute() method:
let script = try NSUserScriptTask(url: url)
try await script.execute()
Run a script with arguments
NSUserScriptTask has three subclasses that support additional functionality depending on the type of the script.
Use the NSUserUnixTask subsclass to run a Unix script and:
Supply command-line arguments.
Connect pipes to stdin, stdout, and stderr.
Get the termination status.
Use the NSUserAppleScriptTask subclass to run an AppleScript, executing either the run handler or a custom Apple event.
Use the NSUserAutomatorTask subclass to run an Automator workflow, supplying an optional input.
To determine what type of script you have, try casting it to each of the subclasses:
let script: NSUserScriptTask = …
switch script {
case let script as NSUserUnixTask:
… use Unix-specific functionality …
case let script as NSUserAppleScriptTask:
… use AppleScript-specific functionality …
case let script as NSUserAutomatorTask:
… use Automatic-specific functionality …
default:
… use generic functionality …
}
Our service has ended and the app has been removed from the App store.
This app supported Sign in with Apple, but even if I try to revoke the account from the iOS settings or account.apple.com on the web, but can't delete it and no error is displayed.
Does anyone know the cause of this problem or have encountered it?
I'm not sure if it's related, but this app was previously transferred from another organization.
I was in the webview long according to the pictures, and then select "save image" will lead to collapse, I have passed on the info plist add NSPhotoLibraryAddUsageDescription solved it.
Now I have another question, does the last item "query" in the screenshot have a similar problem? Since I couldn't click the button (I don't know why this happened), I couldn't test it on the real machine.
Hi,
I've recently tested my custom AuthorizationPlugin on macOS 15 (Sequoia) and I'm seeing a significant change in rendering (or precisely not rendering) the control returned by my SFAuthorizationPluginView's subclass' viewForType method comparing to macOS 14. (I developed and tested my solution on macOS 14 earlier this year).
I use SFAuthorizationPluginView to present a NSView (Custom view) which contains a NSSecureTextField and a NSImageView. I show my custom plugin after the user successfully entered username and password (or only the password if the List of Users is configured in System Settings) into the builtin fields provided by loginwindow:login, so injecting my plugin:mechanism pair into the system.login.console after loginwindow:success. (I need to run my mechanism after builtin:authenticate,privileged since my plugin relies on the authentication result coming from my custom PAM module).
This setup now however doesn't seem to be working: after entering the (username and) password, the circular spinner appears and my NSView never gets rendered. I've found a workaround to place my plugin:mechanism pair after loginwindow:done, so in the end of the whole authorization chain.
I tried to run the good old NameAndPassword bundle, injecting it into the place of the loginwindow:login. Controls are being rendered correctly, but if I place it even right after loginwindow:login it doesn't get rendered as my custom plugin.
Is anybody aware if there's anything has intentionally been changed in macOS 15? Or may it be a bug? I guess the original intention of the SFAuthorizationPluginView class was to overwrite/redefine the UI instead of the builtin username + password field, so if I look at it that way it's expected that the view it contains only gets rendered if we use it instead of loginwindow:login. On the other hand this hasn't been the case until now.
Thanks for any help!
Hi,
I’m currently implementing App Attest attestation validation on the development server.
However, I’m receiving a 403 Forbidden response when I POST a CBOR-encoded payload to the following endpoint:
curl -X POST
-H "Content-Type: application/cbor"
--data-binary @payload.cbor
'https://data-development.appattest.apple.com'
Here’s how I’m generating the CBOR payload in Java:
Map<String, Object> payload = new HashMap<>();
payload.put("attestation", attestationBytes); // byte[] from DCAppAttestService
payload.put("clientDataHash", clientDataHash); // SHA-256 hash of the challenge (byte[])
payload.put("keyId", keyIdBytes); // Base64-decoded keyId (byte[])
payload.put("appId", TEAM_ID + "." + BUNDLE_ID); // e.g., "ABCDE12345.com.example.app"
ObjectMapper cborMapper = new ObjectMapper(new CBORFactory());
byte[] cborBody = cborMapper.writeValueAsBytes(payload);
I’m unsure whether the endpoint is rejecting the payload format or if the endpoint itself is incorrect for this stage.
I’d appreciate clarification on the following:
1. Is https://data-development.appattest.apple.com the correct endpoint for key attestation in a development environment?
2. Should this endpoint accept CBOR-encoded payloads, or is it only for JSON-based assertion validation?
3. Is there a current official Apple documentation that lists:
• the correct URLs for key attestation and assertion validation (production and development),
• or any server-side example code (e.g., Java, Python) for handling attestation/validation on the backend?
So far, I couldn’t find an official document that explicitly describes the expected HTTP endpoints for these operations.
If there’s a newer guide or updated API reference, I’d appreciate a link.
Thanks in advance for your help.