Prioritize user privacy and data security in your app. Discuss best practices for data handling, user consent, and security measures to protect user information.

Posts under General subtopic

Post

Replies

Boosts

Views

Activity

Security Resources
General: Forums topic: Privacy & Security Apple Platform Security support document Developer > Security Enabling enhanced security for your app documentation article Creating enhanced security helper extensions documentation article Security Audit Thoughts forums post Cryptography: Forums tags: Security, Apple CryptoKit Security framework documentation Apple CryptoKit framework documentation Common Crypto man pages — For the full list of pages, run: % man -k 3cc For more information about man pages, see Reading UNIX Manual Pages. On Cryptographic Key Formats forums post SecItem attributes for keys forums post CryptoCompatibility sample code Keychain: Forums tags: Security Security > Keychain Items documentation TN3137 On Mac keychain APIs and implementations SecItem Fundamentals forums post SecItem Pitfalls and Best Practices forums post Investigating hard-to-reproduce keychain problems forums post App ID Prefix Change and Keychain Access forums post Smart cards and other secure tokens: Forums tag: CryptoTokenKit CryptoTokenKit framework documentation Mac-specific resources: Forums tags: Security Foundation, Security Interface Security Foundation framework documentation Security Interface framework documentation BSD Privilege Escalation on macOS Related: Networking Resources — This covers high-level network security, including HTTPS and TLS. Network Extension Resources — This covers low-level network security, including VPN and content filters. Code Signing Resources Notarisation Resources Trusted Execution Resources — This includes Gatekeeper. App Sandbox Resources Share and Enjoy — Quinn “The Eskimo!” @ Developer Technical Support @ Apple let myEmail = "eskimo" + "1" + "@" + "apple.com"
0
0
3.5k
Nov ’25
Privacy & Security Resources
General: Forums topic: Privacy & Security Privacy Resources Security Resources Share and Enjoy — Quinn “The Eskimo!” @ Developer Technical Support @ Apple let myEmail = "eskimo" + "1" + "@" + "apple.com"
0
0
318
Jul ’25
Mobile apps and consent dialogue when logging in
We are using ASWebAuthenticationSession with apps on IoS to achieve SSO between apps. The IdP for authentication (OIDC) is an on-premise and trusted enterprise IdP based on one of the leading products in the market. Our problem is that the user is prompted for every login (and logouts) with a consent dialogue box: “AppName” wants to use “internal domain-name” to Sign In This allows the app and website to share information about you. Cancel Continue” I have read in various places that Apple has a concept of “Trusted domains” where you can put an “Apple certified” static web-page on the IdP. This page needs to contain specific metadata that iOS can verify. Once a user logs in successfully a few times, and if the IdP is verified as trusted, subsequent logins would not prompt the consent screen. Question: I struggle to find Apple documentation on how to go about a process that ends with this “Apple certified web-page” on our IdP”. Anyone who has experience with this process, or who can point me in some direction to find related documentation?
2
0
500
May ’25
My first launch and... My Apple Developer Account suddenly disappeared
Hi! I've just opened Xcode and found that I can't build my app anymore. The error was about signing. Basically, there's no team in my account. Also, I've found that all my certificates have been revoked! I created my dev account a month ago and released only one macOS app. It's SecFolder (it's not self-promotion!!!). App not even in the App Store. I planned to self-distribute it. I'm in a little shock right now since I've just launched and had my first users. And of course, my app is now gone from their Macs, screaming "malware" popup in their faces now :( Since my app is all about paranoia security, this is basically a death sentence for my project... Could someone with experience in the Apple dev ecosystem help me understand what might have gone wrong? Why might Apple think that my app is malware or something? P.S. My app is about Advanced File Access Control for macOS. It gives user complete control over which applications can access specified by user files and folders
0
0
394
Dec ’24
com.apple.developer.web-browser.public-key-credential still leads to com.apple.AuthenticationServices.AuthorizationError Code=1004
Hi, we were recently approved for the com.apple.developer.web-browser.public-key-credential entitlement and have added it to our app. It initially worked as expected for a couple of days, but then it stopped working. We're now seeing the same error as before adding the entitlement: Told not to present authorization sheet: Error Domain=com.apple.AuthenticationServicesCore.AuthorizationError Code=1 "(null)" ASAuthorizationController credential request failed with error: Error Domain=com.apple.AuthenticationServices.AuthorizationError Code=1004 "(null)" Do you have any insights into what might be causing this issue? Thank you!
2
0
176
May ’25
App Groups: macOS vs iOS: Working Towards Harmony
I regularly see folks confused by the difference in behaviour of app groups between macOS and iOS. There have been substantial changes in this space recently. While much of this is now covered in the official docs (r. 92322409), I’ve updated this post to go into all the gory details. If you have questions or comments, start a new thread with the details. Put it in the App & System Services > Core OS topic area and tag it with Code Signing and Entitlements. Oh, and if your question is about app group containers, also include Files and Storage. Share and Enjoy — Quinn “The Eskimo!” @ Developer Technical Support @ Apple let myEmail = "eskimo" + "1" + "@" + "apple.com" App Groups: macOS vs iOS: Working Towards Harmony There are two styles of app group ID: iOS-style app group IDs start with group., for example, group.eskimo1.test. macOS-style app group IDs start with your Team ID, for example, SKMME9E2Y8.eskimo1.test. This difference has been the source of numerous weird problems over the years. Starting in Feb 2025, iOS-style app group IDs are fully supported on macOS for all product types [1]. If you’re writing new code that uses app groups, use an iOS-style app group ID. If you have existing code that uses a macOS-style app group ID, consider how you might transition to the iOS style. IMPORTANT The Feb 2025 changes aren’t tied to an OS release but rather to a Developer website update. For more on this, see Feb 2025 Changes, below. [1] If your product is a standalone executable, like a daemon or agent, wrap it in an app-like structure, as explained in Signing a daemon with a restricted entitlement. iOS-Style App Group IDs An iOS-style app group ID has the following features: It starts with the group. prefix, for example, group.eskimo1.test. You allocate it on the Developer website. This assigns the app group ID to your team. You then claim access to it by listing it in the App Groups entitlement (com.apple.security.application-groups) entitlement. That claim must be authorised by a provisioning profile [1]. The Developer website will only let you include your team’s app group IDs in your profile. For more background on provisioning profiles, see TN3125 Inside Code Signing: Provisioning Profiles. iOS-style app group IDs originated on iOS with iOS 3.0. They’ve always been supported on iOS’s child platforms (iPadOS, tvOS, visionOS, and watchOS). On the Mac: They’ve been supported by Mac Catalyst since that technology was introduced. Likewise for iOS Apps on Mac. Starting in Feb 2025, they’re supported for other Mac products. [1] Strictly speaking macOS does not require that, but if your claim is not authorised by a profile then you might run into other problems. See Entitlements-Validated Flag, below. macOS-Style App Group IDs A macOS-style app group ID has the following features: It should start with your Team ID [1], for example, SKMME9E2Y8.eskimo1.test. It can’t be explicitly allocated on the Developer website. Code that isn’t sandboxed doesn’t need to claim the app group ID in the App Groups entitlement. [2] To use an app group, claim the app group ID in the App Groups entitlement. The App Groups entitlement is not restricted on macOS, meaning that this claim doesn’t need to be authorised by a provisioning profile [3]. However, if you claim an app group ID that’s not authorised in some way, you might run into problems. More on that later in this post. If you submit an app to the Mac App Store, the submission process checks that your app group IDs make sense, that is, they either start with your Team ID (macOS style) or are assigned to your team (iOS style). [1] This is “should” because, historically, macOS has not actually required it. However, that’s now changing, with things like app group container protection. [2] This was true prior to macOS 15. It may still technically be true in macOS 15 and later, but the most important thing, access to the app group container, requires the entitlement because of app group container protection. [3] Technically it’s a validation-required entitlement, something that we’ll come back to in the Entitlements-Validated Flag section. Feb 2025 Changes On 21 Feb 2025 we rolled out a change to the Developer website that completes the support for iOS-style app group IDs on the Mac. Specifically, it’s now possible to create a Mac provisioning profile that authorises the use of an iOS-style app group ID. Note This change doesn’t affect Mac Catalyst or iOS Apps on Mac, which have always been able to use iOS-style app group IDs on the Mac. Prior to this change it was possible to use an iOS-style app group ID on the Mac but that might result in some weird behaviour. Later sections of this post describe some of those problems. Of course, that information is now only of historical interest because, if you’re using an iOS-style app group, you can and should authorise that use with a provisioning profile. We also started seeding Xcode 16.3, which has since been release. This is aware of the Developer website change, and its Signing & Capabilities editor actively encourages you to use iOS-style app groups IDs in all products. Note This Xcode behaviour is the only option for iOS and its child platforms. With Xcode 16.3, it’s now the default for macOS as well. If you have existing project, enable this behaviour using the Register App Groups build setting. Finally, we updated a number of app group documentation pages, including App Groups entitlement and Configuring app groups. Crossing the Streams In some circumstances you might need to have a single app that accesses both an iOS- and a macOS-style app group. For example: You have a macOS app. You want to migrate to an iOS-style app group ID, perhaps because you want to share an app group container with a Mac Catalyst app. But you also need to access existing content in a container identified by a macOS-style app group ID. Historically this caused problems (FB16664827) but, as of Jun 2025, this is fully supported (r. 148552377). When the Developer website generates a Mac provisioning profile for an App ID with the App Groups capability, it automatically adds TEAM_ID.* to the list of app group IDs authorised by that profile (where TEAM_ID is your Team ID). This allows the app to claim access to every iOS-style app group ID associated with the App ID and any macOS-style app group IDs for that team. This helps in two circumstances: It avoids any Mac App Store Connect submission problems, because App Store Connect can see that the app’s profile authorises its use of all the it app group IDs it claims access to. Outside of App Store — for example, when you directly distribute an app using Developer ID signing — you no longer have to rely on macOS granting implicit access to macOS-style app group IDs. Rather, such access is explicitly authorised by your profile. That ensures that your entitlements remain validated, as discussed in the Entitlements-Validated Flag, below. A Historical Interlude These different styles of app group IDs have historical roots: On iOS, third-party apps have always used provisioning profiles, and thus the App Groups entitlement is restricted just like any other entitlement. On macOS, support for app groups was introduced before macOS had general support for provisioning profiles [1], and thus the App Groups entitlement is unrestricted. The unrestricted nature of this entitlement poses two problems. The first is accidental collisions. How do you prevent folks from accidentally using an app group ID that’s in use by some other developer? On iOS this is easy: The Developer website assigns each app group ID to a specific team, which guarantees uniqueness. macOS achieved a similar result by using the Team ID as a prefix. The second problem is malicious reuse. How do you prevent a Mac app from accessing the app group containers of some other team? Again, this isn’t an issue on iOS because the App Groups entitlement is restricted. On macOS the solution was for the Mac App Store to prevent you from publishing an app that used an app group ID that’s used by another team. However, this only works for Mac App Store apps. Directly distributed apps were free to access app group containers of any other app. That was considered acceptable back when the Mac App Store was first introduced. That’s no longer the case, which is why macOS 15 introduced app group container protection. See App Group Container Protection, below. [1] I’m specifically talking about provisioning profiles for directly distributed apps, that is, apps using Developer ID signing. Entitlements-Validated Flag The fact that the App Groups entitlement is unrestricted on macOS is, when you think about it, a little odd. The purpose of entitlements is to gate access to functionality. If an entitlement isn’t restricted, it’s not much of a gate! For most unrestricted entitlements that’s not a problem. Specifically, for both the App Sandbox and Hardened Runtime entitlements, those are things you opt in to, so macOS is happy to accept the entitlement at face value. After all, if you want to cheat you can just not opt in [1]. However, this isn’t the case for the App Groups entitlement, which actually gates access to functionality. Dealing with this requires macOS to walk a fine line between security and compatibility. Part of that solution is the entitlements-validated flag. When a process runs an executable, macOS checks its entitlements. There are two categories: Restricted entitlements must be authorised by a provisioning profile. If your process runs an executable that claims a restricted entitlement that’s not authorised by a profile, the system traps. Unrestricted entitlements don’t have to be authorised by a provisioning profile; they can be used by any code at any time. However, the App Groups entitlement is a special type of unrestricted entitlement called a validation-required entitlement. If a process runs an executable that claims a validation-required entitlement and that claim is not authorised by a profile, the system allows the process to continue running but clears its entitlements-validated flag. Some subsystems gate functionality on the entitlements-validated flag. For example, the data protection keychain uses entitlements as part of its access control model, but refuses to honour those entitlements if the entitlement-validated flag has been cleared. Note If you’re curious about this flag, use the procinfo subcommand of launchctl to view it. For example: % sudo launchctl procinfo `pgrep Test20230126` … code signing info = valid … entitlements validated … If the flag has been cleared, this line will be missing from the code signing info section. Historically this was a serious problem because it prevented you from creating an app that uses both app groups and the data protection keychain [2] (r. 104859788). Fortunately that’s no longer an issue because the Developer website now lets you include the App Groups entitlement in macOS provisioning profiles. [1] From the perspective of macOS checking entitlements at runtime. There are other checks: The App Sandbox is mandatory for Mac App Store apps, but that’s checked when you upload the app to App Store Connect. Directly distributed apps must be notarised to pass Gatekeeper, and the notary service requires that all executables enable the hardened runtime. [2] See TN3137 On Mac keychain APIs and implementations for more about the data protection keychain. App Groups and the Keychain The differences described above explain a historical oddity associated with keychain access. The Sharing access to keychain items among a collection of apps article says: Application groups When you collect related apps into an application group using the App Groups entitlement, they share access to a group container, and gain the ability to message each other in certain ways. You can use app group names as keychain access group names, without adding them to the Keychain Access Groups entitlement. On iOS this makes a lot of sense: The App Groups entitlement is a restricted entitlement on iOS. The Developer website assigns each iOS-style app group ID to a specific team, which guarantees uniqueness. The required group. prefix means that these keychain access groups can’t collide with other keychain access groups, which all start with an App ID prefix (there’s also Apple-only keychain access groups that start with other prefixes, like apple). However, this didn’t work on macOS [1] because the App Groups entitlement is unrestricted there. However, with the Feb 2025 changes it should now be possible to use an iOS-style app group ID as a keychain access group on macOS. Note I say “should” because I’ve not actually tried it (-: Keep in mind that standard keychain access groups are protected the same way on all platforms, using the restricted Keychain Access Groups entitlement (keychain-access-groups). [1] Except for Mac Catalyst apps and iOS Apps on Mac. Not Entirely Unsatisfied When you launch a Mac app that uses app groups you might see this log entry: type: error time: 10:41:35.858009+0000 process: taskgated-helper subsystem: com.apple.ManagedClient category: ProvisioningProfiles message: com.example.apple-samplecode.Test92322409: Unsatisfied entitlements: com.apple.security.application-groups Note The exact format of that log entry, and the circumstances under which it’s generated, varies by platform. On macOS 13.0.1 I was able to generate it by running a sandboxed app that claims a macOS-style app group ID in the App Groups entitlement and also claims some other restricted entitlement. This looks kinda worrying and can be the source of problems. It means that the App Groups entitlement claims an entitlement that’s not authorised by a provisioning profile. On iOS this would trap, but on macOS the system allows the process to continue running. It does, however, clear the entitlements-validate flag. See Entitlements-Validated Flag for an in-depth discussion of this. The easiest way to avoid this problem is to authorise your app group ID claims with a provisioning profile. If there’s some reason you can’t do that, watch out for potential problems with: The data protection keychain — See the discussion of that in the Entitlements-Validated Flag and App Groups and the Keychain sections, both above. App group container protection — See App Group Container Protection, below. App Group Container Protection macOS 15 introduced app group container protection. To access an app group container without user intervention: Claim access to the app group by listing its ID in the App Groups entitlement. Locate the container by calling the containerURL(forSecurityApplicationGroupIdentifier:) method. Ensure that at least one of the following criteria are met: Your app is deployed via the Mac App Store (A). Or via TestFlight when running on macOS 15.1 or later (B). Or the app group ID starts with your app’s Team ID (C). Or your app’s claim to the app group is authorised by a provisioning profile embedded in the app (D) [1]. If your app doesn’t follow these rules, the system prompts the user to approve its access to the container. If granted, that consent applies only for the duration of that app instance. For more on this, see: The System Integrity Protection section of the macOS Sequoia 15 Release Notes The System Integrity Protection section of the macOS Sequoia 15.1 Release Notes WWDC 2024 Session 10123 What’s new in privacy, starting at 12:23 The above criteria mean that you rarely run into the app group authorisation prompt. If you encounter a case where that happens, feel free to start a thread here on DevForums. See the top of this post for info on the topic and tags to use. Note Prior to the Feb 2025 change, things generally worked out fine when you app was deployed but you might’ve run into problems during development. That’s no longer the case. [1] This is what allows Mac Catalyst and iOS Apps on Mac to work. Revision History 2025-08-12 Added a reference to the Register App Groups build setting. 2025-07-28 Updated the Crossing the Streams section for the Jun 2025 change. Made other minor editorial changes. 2025-04-16 Rewrote the document now that iOS-style app group IDs are fully supported on the Mac. Changed the title from App Groups: macOS vs iOS: Fight! to App Groups: macOS vs iOS: Working Towards Harmony 2025-02-25 Fixed the Xcode version number mentioned in yesterday’s update. 2025-02-24 Added a quick update about the iOS-style app group IDs on macOS issue. 2024-11-05 Further clarified app group container protection. Reworked some other sections to account for this new reality. 2024-10-29 Clarified the points in App Group Container Protection. 2024-10-23 Fleshed out the discussion of app group container protection on macOS 15. 2024-09-04 Added information about app group container protection on macOS 15. 2023-01-31 Renamed the Not Entirely Unsatisfactory section to Not Entirely Unsatisfied. Updated it to describe the real impact of that log message. 2022-12-12 First posted.
0
0
5.2k
Aug ’25
Rooted iPhone 15 Pro
iOS 18.2 (22C152) My phone is currently on lockdown mode and I have gotten alerts from Experian that my information is on the dark web as well as having to reset all my accounts. However this has not fixed the issue. Even if I hard factory reset settings etc the root makes its way very shortly after, if not immediately. Though I recently got these notifications and purchased the phone in Feb. 2024 the has been an ongoing issue for a few years. I can elaborate if needed. To make it short I have a reinstalled root on my phone. Apple nor Spectrum (who I have my phone with) have been able to assist with this issue. I have been able to clarify this ”hijacking” with the Geek Squad who didn’t want their legal team involved when asking for a report so the PD can do an internal cyber investigation. So, I’ve just lived with it. Let me know what your thoughts to resolve this issue would be before spending thousands to find a resolution on my own. Side note before asked: what I’ve been told may be it’s ”gateway” is via “DNS hijacking” with WiFi or internally hotspot. I can also elaborate if needed-I’m not a web developer, however I do know where this issue stems from whom has their masters in such industry as well as 30 years experience. It’s annoying and inconvenient at this point and I’m looking for clarity, resolution and if no justice for the criminal then liability. thank you! please refrain from saying “APpLe CaNt bE hiJaCked“ ..
1
0
567
Dec ’24
Help w/ Access Itunes
I’ve come to discover over the course of three weeks of trying to gain access to my original iTunes account that because of the old security protocols I cannot get access to my music. Apple has said there is no way to access that data without being able to send a reset to the old deleted email attached to that data. That said Cox deleted all of my emails when they migrated over to yahoo so I cannot send an email to reset password to gain access and Apple does not have a protocol in place even though it’s very clear. The current account is linked to the old account. Any of your developers out there have an idea on how I can get past this because the birthdate and the username are not matching up to what they should be. Appreciate your brain muscle guys. It’s a lifetime of music.
0
0
237
Dec ’24
ASCredentialProviderExtensionContext completeRequestWithTextToInsert:completionHandler: sometimes fails to return text
completeRequestWithTextToInsert is used to return text into an arbitrary textfield via the context menu AutoFill/Passwords from a 3rd party password manager (or presumably the Passwords App) in iOS 18. While testing this feature in the debugger, it would often fail on the first invocation. It also appears to happen intermittently in the released app extension. Subsequent testing using the Passwords App shows it too may fail to return a value. I have confirmed this behaviour is repeatable with the Passwords App on an iPhone running iOS 18.3.1 Reboot the iPhone. Show the App Library, and right click Autofill. Select Passwords Select Passwords (App) Select a password. Nothing will be inserted (intermittently). Feedback assistant report: FB16788563
0
0
361
Mar ’25
XCode claims that tracking domains are not listed in the Privacy Manifest
Hi, Xcode Instruments shows multiple Points of Interest with the information that the framework is not listed in my Privacy Manifest. However, I have already included them in the Privacy Manifest under the privacy tracking domains. I have this problem with every tracking domain i listed in the Privacy Manifest's Privacy Tracking Domains. Did I make a mistake in my Privacy Manifest declaration?
0
0
106
May ’25
Where to add the apple-app-site-association files for web-credential capability - Domain or subdomain?
I want to implement webauthn using WKWebView for my mac application. I want to host the asaa file in the rpid. Below are my site configuration - Main domain - example.com Subdomain which has the sign-in view and where webauthn kicks in - signin.example.com RPID - example.com Where shall i host the asaa file at domain(example.com) or subdomain(signin.example.com)?
3
0
1.6k
Jan ’25
The file “Desktop” couldn’t be opened.
hey everyone.!! In one of my macOS projects I am trying to fetch the files and folders available on "Desktop" and "Document" folder and trying to showing it on collection view inside the my project, but when I try to fetch the files and folder of desktop and document, I am not able to fetch it. But if i try it by setting the entitlements False, I am able to fetch it. If any have face the similar issue, or have an alternative it please suggest. NOTE:- I have tried implementing it using NSOpenPanel and it works, but it lowers the user experience.
0
0
460
Jan ’25
Can't get user info more than once upon signin ?
Hi, I know it's been discussed before, but I'm testing the Sign in with Apple feature, and I only get the user info on the first try. Now, I know that you're supposed to go to the account settings, and look for the list of accounts that you used your Apple account to sign in with, and it used to work a few months back. But for the last few weeks I haven't been able to get the user info, even after deleting the entry from my Sign In With Apple app list. Has there been a recent change to Apple security policy that prevents such a move from working ? Or am I doing something wrong ? Thank you
0
0
307
Feb ’25
api and data collection app stroe connect
I added a feature to my app that retrieves only app settings (no personal data) from my API hosted on Cloudflare Workers. The app does not send, collect, track, or share any user data, and I do not store or process any personal information. Technical details such as IP address, user agent, and device information may be automatically transmitted as part of the internet protocol when the request is made, but my app does not log or use them. Cloudflare may collect this information. Question: Does this count as “data collection” for App Store Connect purposes, or can I select “No Data Collected”?
0
0
419
Aug ’25
SecItem: Fundamentals
I regularly help developers with keychain problems, both here on DevForums and for my Day Job™ in DTS. Many of these problems are caused by a fundamental misunderstanding of how the keychain works. This post is my attempt to explain that. I wrote it primarily so that Future Quinn™ can direct folks here rather than explain everything from scratch (-: If you have questions or comments about any of this, put them in a new thread and apply the Security tag so that I see it. Share and Enjoy — Quinn “The Eskimo!” @ Developer Technical Support @ Apple let myEmail = "eskimo" + "1" + "@" + "apple.com" SecItem: Fundamentals or How I Learned to Stop Worrying and Love the SecItem API The SecItem API seems very simple. After all, it only has four function calls, how hard can it be? In reality, things are not that easy. Various factors contribute to making this API much trickier than it might seem at first glance. This post explains the fundamental underpinnings of the keychain. For information about specific issues, see its companion post, SecItem: Pitfalls and Best Practices. Keychain Documentation Your basic starting point should be Keychain Items. If your code runs on the Mac, also read TN3137 On Mac keychain APIs and implementations. Read the doc comments in <Security/SecItem.h>. In many cases those doc comments contain critical tidbits. When you read keychain documentation [1] and doc comments, keep in mind that statements specific to iOS typically apply to iPadOS, tvOS, and watchOS as well (r. 102786959). Also, they typically apply to macOS when you target the data protection keychain. Conversely, statements specific to macOS may not apply when you target the data protection keychain. [1] Except TN3137, which is very clear about this (-: Caveat Mac Developer macOS supports two different keychain implementations: the original file-based keychain and the iOS-style data protection keychain. IMPORTANT If you’re able to use the data protection keychain, do so. It’ll make your life easier. See the Careful With that Shim, Mac Developer section of SecItem: Pitfalls and Best Practices for more about this. TN3137 On Mac keychain APIs and implementations explains this distinction. It also says: The file-based keychain is on the road to deprecation. This is talking about the implementation, not any specific API. The SecItem API can’t be deprecated because it works with both the data protection keychain and the file-based keychain. However, Apple has deprecated many APIs that are specific to the file-based keychain, for example, SecKeychainCreate. TN3137 also notes that some programs, like launchd daemons, can’t use the file-based keychain. If you’re working on such a program then you don’t have to worry about the deprecation of these file-based keychain APIs. You’re already stuck with the file-based keychain implementation, so using a deprecated file-based keychain API doesn’t make things worse. The Four Freedoms^H^H^H^H^H^H^H^H Functions The SecItem API contains just four functions: SecItemAdd(_:_:) SecItemCopyMatching(_:_:) SecItemUpdate(_:_:) SecItemDelete(_:) These directly map to standard SQL database operations: SecItemAdd(_:_:) maps to INSERT. SecItemCopyMatching(_:_:) maps to SELECT. SecItemUpdate(_:_:) maps to UPDATE. SecItemDelete(_:) maps to DELETE. You can think of each keychain item class (generic password, certificate, and so on) as a separate SQL table within the database. The rows of that table are the individual keychain items for that class and the columns are the attributes of those items. Note Except for the digital identity class, kSecClassIdentity, where the values are split across the certificate and key tables. See Digital Identities Aren’t Real in SecItem: Pitfalls and Best Practices. This is not an accident. The data protection keychain is actually implemented as an SQLite database. If you’re curious about its structure, examine it on the Mac by pointing your favourite SQLite inspection tool — for example, the sqlite3 command-line tool — at the keychain database in ~/Library/Keychains/UUU/keychain-2.db, where UUU is a UUID. WARNING Do not depend on the location and structure of this file. These have changed in the past and are likely to change again in the future. If you embed knowledge of them into a shipping product, it’s likely that your product will have binary compatibility problems at some point in the future. The only reason I’m mentioning them here is because I find it helpful to poke around in the file to get a better understanding of how the API works. For information about which attributes are supported by each keychain item class — that is, what columns are in each table — see the Note box at the top of Item Attribute Keys and Values. Alternatively, look at the Attribute Key Constants doc comment in <Security/SecItem.h>. Uniqueness A critical part of the keychain model is uniqueness. How does the keychain determine if item A is the same as item B? It turns out that this is class dependent. For each keychain item class there is a set of attributes that form the uniqueness constraint for items of that class. That is, if you try to add item A where all of its attributes are the same as item B, the add fails with errSecDuplicateItem. For more information, see the errSecDuplicateItem page. It has lists of attributes that make up this uniqueness constraint, one for each class. These uniqueness constraints are a major source of confusion, as discussed in the Queries and the Uniqueness Constraints section of SecItem: Pitfalls and Best Practices. Parameter Blocks Understanding The SecItem API is a classic ‘parameter block’ API. All of its inputs are dictionaries, and you have to know which properties to set in each dictionary to achieve your desired result. Likewise for when you read properties in output dictionaries. There are five different property groups: The item class property, kSecClass, determines the class of item you’re operating on: kSecClassGenericPassword, kSecClassCertificate, and so on. The item attribute properties, like kSecAttrAccessGroup, map directly to keychain item attributes. The search properties, like kSecMatchLimit, control how the system runs a query. The return type properties, like kSecReturnAttributes, determine what values the query returns. The value type properties, like kSecValueRef perform multiple duties, as explained below. There are other properties that perform a variety of specific functions. For example, kSecUseDataProtectionKeychain tells macOS to use the data protection keychain instead of the file-based keychain. These properties are hard to describe in general; for the details, see the documentation for each such property. Inputs Each of the four SecItem functions take dictionary input parameters of the same type, CFDictionary, but these dictionaries are not the same. Different dictionaries support different property groups: The first parameter of SecItemAdd(_:_:) is an add dictionary. It supports all property groups except the search properties. The first parameter of SecItemCopyMatching(_:_:) is a query and return dictionary. It supports all property groups. The first parameter of SecItemUpdate(_:_:) is a pure query dictionary. It supports all property groups except the return type properties. Likewise for the only parameter of SecItemDelete(_:). The second parameter of SecItemUpdate(_:_:) is an update dictionary. It supports the item attribute and value type property groups. Outputs Two of the SecItem functions, SecItemAdd(_:_:) and SecItemCopyMatching(_:_:), return values. These output parameters are of type CFTypeRef because the type of value you get back depends on the return type properties you supply in the input dictionary: If you supply a single return type property, except kSecReturnAttributes, you get back a value appropriate for that return type. If you supply multiple return type properties or kSecReturnAttributes, you get back a dictionary. This supports the item attribute and value type property groups. To get a non-attribute value from this dictionary, use the value type property that corresponds to its return type property. For example, if you set kSecReturnPersistentRef in the input dictionary, use kSecValuePersistentRef to get the persistent reference from the output dictionary. In the single item case, the type of value you get back depends on the return type property and the keychain item class: For kSecReturnData you get back the keychain item’s data. This makes most sense for password items, where the data holds the password. It also works for certificate items, where you get back the DER-encoded certificate. Using this for key items is kinda sketchy. If you want to export a key, called SecKeyCopyExternalRepresentation. Using this for digital identity items is nonsensical. For kSecReturnRef you get back an object reference. This only works for keychain item classes that have an object representation, namely certificates, keys, and digital identities. You get back a SecCertificate, a SecKey, or a SecIdentity, respectively. For kSecReturnPersistentRef you get back a data value that holds the persistent reference. Value Type Subtleties There are three properties in the value type property group: kSecValueData kSecValueRef kSecValuePersistentRef Their semantics vary based on the dictionary type. For kSecValueData: In an add dictionary, this is the value of the item to add. For example, when adding a generic password item (kSecClassGenericPassword), the value of this key is a Data value containing the password. This is not supported in a query dictionary. In an update dictionary, this is the new value for the item. For kSecValueRef: In add and query dictionaries, the system infers the class property and attribute properties from the supplied object. For example, if you supply a certificate object (SecCertificate, created using SecCertificateCreateWithData), the system will infer a kSecClass value of kSecClassCertificate and various attribute values, like kSecAttrSerialNumber, from that certificate object. This is not supported in an update dictionary. For kSecValuePersistentRef: For query dictionaries, this uniquely identifies the item to operate on. This is not supported in add and update dictionaries. Revision History 2025-05-28 Expanded the Caveat Mac Developer section to cover some subtleties associated with the deprecation of the file-based keychain. 2023-09-12 Fixed various bugs in the revision history. Added a paragraph explaining how to determine which attributes are supported by each keychain item class. 2023-02-22 Made minor editorial changes. 2023-01-28 First posted.
0
0
4.1k
May ’25
Submission Rejected: Guideline 5.1.1 - Legal - Privacy - Data Collection and Storage
Hi, I am in need of your help with publishing my game. I got the following explanation for the negative review of my app/game. Issue Description One or more purpose strings in the app do not sufficiently explain the use of protected resources. Purpose strings must clearly and completely describe the app's use of data and, in most cases, provide an example of how the data will be used. Next Steps Update the local network information purpose string to explain how the app will use the requested information and provide a specific example of how the data will be used. See the attached screenshot. Resources Purpose strings must clearly describe how an app uses the ability, data, or resource. The following are hypothetical examples of unclear purpose strings that would not pass review: "App would like to access your Contacts" "App needs microphone access" See examples of helpful, informative purpose strings. The problem is that they say my app asks to allow my app to find devices on local networks. And that this needs more explanation in the purpose strings. Totally valid to ask, but the problem is my app doesn't need local access to devices, and there shouldn't be code that asks this?? FYI the game is build with Unity. Would love some help on how to turn this off so that my app can get published.
0
0
205
1d
I'm trying to use a keychain-access-group and failing
This is on macOS, not iOS. Not sure if that should make a difference? I have a GUI app and a command line tool (that will run a daemon) that I need to share credentials between. The keys/certs will be stored using the GUI app. But, both tools need to utilize them. guard let accessControl = SecAccessControlCreateWithFlags( nil, kSecAttrAccessibleWhenPasscodeSetThisDeviceOnly, [.privateKeyUsage], nil ) else { throw KeychainCertError.keychainError(errSecAuthFailed, "Failed to create access control for private key") } // Define Key Pair Attributes let privateKeyAttributes: [String: Any] = [ kSecAttrIsPermanent as String: true, kSecAttrApplicationTag as String: privateLabel.data(using: .utf8)!, kSecAttrLabel as String: privateLabel, // kSecAttrAccessControl as String: accessControl, kSecAttrAccessGroup as String: keychainAccessGroup ] With the kSecAttrAccessControl commented out, I am able to generate a private key and generate a self signed certificate that is stored on the user login keychain. If I uncomment that line, I get an error to the affect of "Keychain error (-26275): Failed to generate key pair: A required entitlement isn't present" Also, to share the credentials, don't they need to be NOT on the user keychain for the daemon to access them? Any ideas what I am doing wrong? I think I'm a bit over my head here with the the security, crypto kit and openssl. 😁
6
0
469
Mar ’25
Fraud prevention using Device Check when publishing multiple apps
I would like to confirm about fraud prevention using Device Check when publishing multiple apps. If the Team ID and Key ID are the same, will the values be shared across all apps with Device Check? With Device Check, only two keys can be created per developer account, and these two are primarily intended for key renewal in case of a leak, rather than for assigning different keys to each app, correct? If both 1 and 2 are correct, does that mean that Device Check should not be used to manage "one-time-only rewards per device" when offering them across multiple apps? Thank you very much for your confirmation.
0
0
170
Apr ’25
The Case for Sandboxing a Directly Distributed App
I’ve explained this point many times on the forums, so I figured I’d write it up properly once and for all. If you have questions or comments, start a new thread in Privacy & Security > General and add the App Sandbox tag. That way I’ll be sure to see it. Share and Enjoy — Quinn “The Eskimo!” @ Developer Technical Support @ Apple let myEmail = "eskimo" + "1" + "@" + "apple.com" The Case for Sandboxing a Directly Distributed App Many folks consider the App Sandbox to be a binary choice: “My app ships in the Mac App Store, so I must sandbox it.” “I directly distribute my app, so I’ll ignore the App Sandbox.” However, those are not your only options. In many cases it makes sense to sandbox a directly distributed app. Sandboxing your app has at least three benefits: It enables app container protection. See Trusted Execution Resources for a link to more info on that. If your app includes any app extensions, it simplifies your development experience because your app and its extensions run in a similar environment. It improves your app’s security (although the actual benefits vary based on the specifics of your app). Sandboxing some apps can be tricky because of the additional security limits applied by the sandbox. However, in a directly distributed app you have access to two techniques that are not available to Mac App Store apps: Temporary exception entitlements Non-sandboxed XPC services Temporary exception entitlements Use temporary exception entitlements to selectively disable specific sandbox security limits. Imagine, for example, that you’re creating a simple document-based app that’s generally compatible with the sandbox. However, that app needs to send an Apple event to Music to create a playlist. That Apple event is blocked by the sandbox. You don’t need to disable the entire App Sandbox just to get around this security limit. Instead, use the com.apple.security.temporary-exception.apple-events entitlement to open a small hole in the sandbox. There are temporary exception entitlements to disable most sandbox security limits. For more information about them, follow the link in App Sandbox Resources. IMPORTANT Don’t be alarmed by the temporary in temporary exception entitlements. That word makes sense when you view this from the Mac App Store perspective. Back in the early days of the Mac App Store, some apps were allowed to use temporary exception entitlements because of limitations in the App Sandbox. Once App Sandbox was sufficiently enhanced, these temporary exception entitlements were no longer allowed in the Mac App Store. However, there’s nothing temporary about the implementation of these entitlements. They work today and are expected to continue working in the future. Using them in a directly distributed app is not a problem. Non-sandboxed XPC services Not all sandbox security limits have a corresponding temporary exception entitlement. For example, the sandbox prevents you from sending a Unix signal to other processes, and there’s no temporary exception entitlement to allow that. If you run into such a limit, move that code to a non-sandboxed XPC service, then have the main app request that the XPC service perform the operation on its behalf. An XPC service can be useful even when there is a temporary exception entitlement to disable a specific sandbox security limit. Continuing the Apple event example from above, if you put the code that sends the Apple event into an XPC service, you only need to apply the temporary exception entitlement to that service, not to your app as a whole. Conclusion If you directly distribute your app, consider enabling the App Sandbox. It has some important benefits, and it might be more feasible than you think.
0
0
421
Mar ’25
SecPKCS12Import fails in Tahoe
We are using SecPKCS12Import C API in our application to import a self seigned public key certificate. We tried to run the application for the first time on Tahoe and it failed with OSStatus -26275 error. The release notes didn't mention any deprecation or change in the API as per https://developer.apple.com/documentation/macos-release-notes/macos-26-release-notes. Are we missing anything? There are no other changes done to our application.
1
0
763
Sep ’25
How to Digitally Sign a PDF File in Swift?
I'm currently working on a project in Swift where I need to digitally sign a PDF file. I have the following resources available: Private Key stored in the iOS Keychain with a tag. Public Key also stored in the iOS Keychain with a tag. A valid certificate stored as a PEM string. I need to digitally sign a PDF file with the above keys and certificate, but I'm struggling to find a clear and straightforward example or guidance on how to achieve this in Swift. Specifically, I’m looking for help with: Creating the digital signature using the private key and certificate. Embedding this signature into the PDF file. Any considerations I should be aware of regarding the format of the signed PDF (e.g., CMS, PKCS7, etc.). If anyone has experience with digitally signing PDFs in Swift, I would greatly appreciate your guidance or code examples. Thank you in advance!
0
0
543
Dec ’24