I have rewatched WWDC22 a few times , but still not getting full understanding how to get .mlmodel model file type from components .
Example with banana ripeness is cool , but what need to be added to actually have output of .mlmodel , is somewhere full sample code for this type of modular project ?
Code is from [https://developer.apple.com/videos/play/wwdc2022/10019)
import CoreImage
import CreateMLComponents
struct ImageRegressor {
static let trainingDataURL = URL(fileURLWithPath: "~/Desktop/bananas")
static let parametersURL = URL(fileURLWithPath: "~/Desktop/parameters")
static func train() async throws -> some Transformer<CIImage, Float> {
let estimator = ImageFeaturePrint()
.appending(LinearRegressor())
// File name example: banana-5.jpg
let data = try AnnotatedFiles(labeledByNamesAt: trainingDataURL, separator: "-", index: 1, type: .image)
.mapFeatures(ImageReader.read)
.mapAnnotations({ Float($0)! })
let (training, validation) = data.randomSplit(by: 0.8)
let transformer = try await estimator.fitted(to: training, validateOn: validation)
try estimator.write(transformer, to: parametersURL)
return transformer
}
}
I have tried to run it in Mac OS command line type app, Swift-UI but most what I had as output was .pkg with
"pipeline.json,
parameters,
optimizer.json,
optimizer"
Explore the power of machine learning and Apple Intelligence within apps. Discuss integrating features, share best practices, and explore the possibilities for your app here.
Selecting any option will automatically load the page
Post
Replies
Boosts
Views
Activity
Hi all,
I'm capturing a photo using AVCapturePhotoOutput, and I've set:
let photoSettings = AVCapturePhotoSettings()
photoSettings.isDepthDataDeliveryEnabled = true
Then I create the handler like this:
let data = photo.fileDataRepresentation()
let handler = try ImageRequestHandler(data: data, orientation: .right)
Now I’m wondering:
If depth data delivery is enabled, is it actually included and used when I pass the Data to ImageRequestHandler?
Or do I need to explicitly pass the depth data using the other initializer?
let handler = try ImageRequestHandler(
cvPixelBuffer: photo.pixelBuffer!,
depthData: photo.depthData,
orientation: .right
)
In short:
Does ImageRequestHandler(data:) make use of embedded depth info from AVCapturePhoto.fileDataRepresentation() — or is the pixel buffer + explicit depth data required?
Thanks for any clarification!
I have a mac (M4, MacBook Pro) running Tahoe 26.0 beta. I am running Xcode beta.
I can run code that uses the LLM in a #Preview { }.
But when I try to run the same code in the simulator, I get the 'device not ready' error and I see the following in the Settings app.
Is there anything I can do to get the simulator to past this point and allowing me to test on it with Apple's LLM?
Hello,
I am testing the sample project provided here: Bringing advanced speech-to-text capabilities to your app.
On both macOS 26.0 beta and iOS 26.0 beta, the app crashes immediately on launch with a dyld "Symbol not found" error related to FoundationModels.framework.
It feels like this may be related to testing primarily on newer Apple Silicon devices, as I am seeing consistent crashes on an Intel MacBook and on an older iPhone device.
I would appreciate any insight, confirmation, or guidance on whether this is a known limitation or if there is a workaround. Is it planned to be resolved soon?
Environment
macOS:
Device: MacBook Pro (Intel)
Processor: 2 GHz Quad-Core Intel Core i5
Graphics: Intel Iris Plus Graphics 1536 MB
Memory: 16 GB 3733 MHz LPDDR4X
OS: macOS Tahoe Version 26.0 Beta (25A5338b)
iOS:
Device: iPhone 11
Model Number: MHDD3HN/A
OS: iOS 26.0
Xcode:
Version: 26.0 beta 3 (17A5276g)
Crash (macOS)
Abort signal received. Excerpt from crash dump:
dyld`__abort_with_payload:
0x7ff80e3ad4a0 <+0>: movl $0x2000209, %eax
0x7ff80e3ad4a5 <+5>: movq %rcx, %r10
0x7ff80e3ad4a8 <+8>: syscall
-> 0x7ff80e3ad4aa <+10>: jae 0x7ff80e3ad4b4
Console:
dyld[9819]: Symbol not found: _$s16FoundationModels20LanguageModelSessionC5model10guardrails5tools12instructionsAcA06SystemcD0C_AC10GuardrailsVSayAA4Tool_pGAA12InstructionsVSgtcfC
Referenced from: /Users/userx/Library/Developer/Xcode/DerivedData/SwiftTranscriptionSampleApp-*/Build/Products/Debug/SwiftTranscriptionSampleApp.app/Contents/MacOS/SwiftTranscriptionSampleApp.debug.dylib
Expected in: /System/Library/Frameworks/FoundationModels.framework/Versions/A/FoundationModels
Crash (iOS)
Abort signal received. Excerpt from crash dump:
dyld`__abort_with_payload:
0x18f22b4b0 <+0>: mov x16, #0x209
0x18f22b4b4 <+4>: svc #0x80
-> 0x18f22b4b8 <+8>: b.lo 0x18f22b4d8
Console
dyld[2080]: Symbol not found: _$s16FoundationModels20LanguageModelSessionC5model10guardrails5tools12instructionsAcA06SystemcD0C_AC10GuardrailsVSayAA4Tool_pGAA12InstructionsVSgtcfC
Referenced from: /private/var/containers/Bundle/Application/.../SwiftTranscriptionSampleApp.app/SwiftTranscriptionSampleApp.debug.dylib
Expected in: /System/Library/Frameworks/FoundationModels.framework/FoundationModels
Question
Is this crash expected on Intel Macs and older iPhone models with the beta SDKs?
Is there an official statement on whether macOS 26.x releases support Intel, or it exists only until macOS 26.1?
Any suggested workarounds for testing this sample project on current hardware?
Is this a known limitation for the 26.0 beta, and if so, should we expect a fix in 26.0 or only in subsequent releases?
Attaching screenshots for reference.
Thank you in advance.
I get the following dyld error on an iPad Pro with Xcode 26 beta 4:
Symbol not found: _$s16FoundationModels20LanguageModelSessionC7prewarm12promptPrefixyAA6PromptVSg_tF
Any advice?
Topic:
Machine Learning & AI
SubTopic:
Foundation Models
Pretty much as per the title and I suspect I know the answer. Given that Foundation Models run on device, is it possible to use Foundation Models framework inside of a DeviceActivityReport? I've been tinkering with it, and all I get is errors and "Sandbox restrictions". Am I missing something? Seems like a missed trick to utilise on device AI/ML with other frameworks.
Has Apple made any commitment to versioning the Foundation Models on device? What if you build a feature that works great on 26.0 but they change the model or guardrails in 26.1 and it breaks your feature, is your only recourse filing Feedback or pulling the feature from the app? Will there be a way to specify a model version like in all of the server based LLM provider APIs? If not, sounds risky to build on.
Are there any guidelines for using Foundation Models To generate text for users in response to some canned queries? Should we use a special icon or text to let the user know that Apple Intelligence is generating the text? Should there be a disclaimer like, Apple Intelligence can make mistakes, please check for accuracy, etc?
Topic:
Machine Learning & AI
SubTopic:
Apple Intelligence
I have reinstalled everything including command line tools but the CreateML frameworks fail to install, I need the framework so that I can train my auto-categorzation model which predicts category based on descriptions. I need that framework because I want to use reviision 4.
please suggest advice on how do I proceed
Hi Apple team,
When using AppShortcutsProvider, I hit the hard limit:
Each app may have at most 10 App Shortcuts.
This feels limiting for apps that offer multiple workflows and would benefit from deeper Siri integration.
Could this cap be raised — ideally to 30 — to support broader use of AppIntents, enhance Siri automation, and unlock more system-level capabilities?
AppShortcuts are a fantastic tool. Increasing the limit would make them even more powerful.
Thanks!
Topic:
Machine Learning & AI
SubTopic:
Apple Intelligence
Tags:
Shortcuts
App Intents
Apple Intelligence
I am trying to create a slightly different version of the content tagging code in the documentation:
https://developer.apple.com/documentation/foundationmodels/systemlanguagemodel/usecase/contenttagging
In the playground I am getting an "Inference Provider crashed with 2:5" error.
I have no idea what that means or how to address the error. Any assistance would be appreciated.
Topic:
Machine Learning & AI
SubTopic:
Foundation Models
Hi,
Are there rules around using Foundation Models:
In a background task/session?
Concurrently, i.e. a bunch simultaneously using Swift Concurrency?
I couldn't find this in the docs (sorry if I missed it) so wondering what's supported and what the best practice is here.
In case it matters, my primary platform is Vision Pro (so, M2).
Hey,
I receive GenerableContent as follows:
let response = try await session.respond(to: "", schema: generationSchema)
And it wraps GeneratedJSON which seems to be private.
What is the best way to get a string / raw value out of it? I noticed it could theoretically be accessed via transcriptEntries but it's not ideal.
Topic:
Machine Learning & AI
SubTopic:
Foundation Models
Hello,
I was successfully able to compile TKDKid1000/TinyLlama-1.1B-Chat-v0.3-CoreML using Core ML, and it's working well. However, I’m now trying to compile the same model using Swift Transformers.
With the limited documentation available on the swift-chat and Hugging Face repositories, I’m finding it difficult to understand the correct process for compiling a model via Swift Transformers. I attempted the following approach, but I’m fairly certain it’s not the recommended or correct method.
Could someone guide me on the proper way to compile and use models like TinyLlama with Swift Transformers? Any official workflow, example, or best practice would be very helpful.
Thanks in advance!
This is the approach I have used:
import Foundation
import CoreML
import Tokenizers
@main
struct HopeApp {
static func main() async {
print(" Running custom decoder loop...")
do {
let tokenizer = try await AutoTokenizer.from(pretrained: "PY007/TinyLlama-1.1B-Chat-v0.3")
var inputIds = tokenizer("this is the test of the prompt")
print("🧠 Prompt token IDs:", inputIds)
let model = try float16_model(configuration: .init())
let maxTokens = 30
for _ in 0..<maxTokens {
let input = try MLMultiArray(shape: [1, 128], dataType: .int32)
let mask = try MLMultiArray(shape: [1, 128], dataType: .int32)
for i in 0..<inputIds.count {
input[i] = NSNumber(value: inputIds[i])
mask[i] = 1
}
for i in inputIds.count..<128 {
input[i] = 0
mask[i] = 0
}
let output = try model.prediction(input_ids: input, attention_mask: mask)
let logits = output.logits // shape: [1, seqLen, vocabSize]
let lastIndex = inputIds.count - 1
let lastLogitsStart = lastIndex * 32003 // vocab size = 32003
var nextToken = 0
var maxLogit: Float32 = -Float.greatestFiniteMagnitude
for i in 0..<32003 {
let logit = logits[lastLogitsStart + i].floatValue
if logit > maxLogit {
maxLogit = logit
nextToken = i
}
}
inputIds.append(nextToken)
if nextToken == 32002 { break }
let partialText = try await tokenizer.decode(tokens:inputIds)
print(partialText)
}
} catch {
print("❌ Error: \(error)")
}
}
}
Topic:
Machine Learning & AI
SubTopic:
Core ML
I would like to write a macOS application that uses on-device AI (FoundationModels).
I don’t understand how to, practically, give it access to my documents, photos, or contacts and be able to ask it a question like: “Find the document that talks about this topic.”
Do I need to manually retrieve the data and provide it in the form of a prompt? Or is FoundationModels capable of accessing it on its own?
Thanks
I've been successfully integrating the Foundation Models framework into my healthcare app using structured generation with @Generable schemas. While my initial testing (20-30 iterations) shows promising results, I need to validate consistency and reliability at scale before production deployment.
Question
Is there a recommended approach for automated, large-scale testing of Foundation Models responses?
Specifically, I'm looking to:
Automate 1000+ test iterations with consistent prompts and structured schemas
Measure response consistency across identical inputs
Validate structured output reliability (proper schema adherence, no generation failures)
Collect performance metrics (TTFT, TPS) for optimization
Specific Questions
Framework Limitations: Are there any undocumented rate limits or thermal throttling considerations for rapid session creation/destruction?
Performance Tools: Can Xcode's Foundation Models Instrument be used programmatically, or only through Instruments UI?
Automation Integration: Any recommendations for integrating with testing frameworks?
Session Reuse: Is it better to reuse a single LanguageModelSession or create fresh sessions for each test iteration?
Use Case Context
My wellness app provides medically safe activity recommendations based on user health profiles. The Foundation Models framework processes health context and generates structured recommendations for exercises, nutrition, and lifestyle activities. Given the safety implications of providing health-related guidance, I need rigorous validation to ensure the model consistently produces appropriate, well-formed recommendations across diverse user scenarios and health conditions.
Has anyone in the community built similar large-scale testing infrastructure for Foundation Models? Any insights on best practices or potential pitfalls would be greatly appreciated.
Topic:
Machine Learning & AI
SubTopic:
Foundation Models
Foundation Models are driving me up the wall.
My use case: A news app - I want to summarize news articles. Sounds like a perfect use for the added-in-beta-5 "no guardrails" mode for text-to-text transformations...
... and it's true, I don't get guardrails exceptions anymore but now, the model itself frequently refuses to summarize stuff which in a way is even worse as I have to parse the output text to figure out if it failed instead of getting an exception. I mostly worked that out with my system instructions but still, the refusing to summarize makes it really tough to use.
I instructed the model to tell me why it failed if that happens.
Examples of various refusals for news articles from major sources:
"The article mentions "Visual Lookup" but does not provide details about how it integrates with iOS 26."
"The article includes unsafe content regarding a political figure's potential influence over the Federal Reserve board, which is against my guidelines."
"the article contains unsafe content."
"The article is biased and opinionated and focuses on the author's opinion."
(this is despite the instructions specifically asking for a neutral summary - I am asking it to not use bias in the output but it still refuses)
I have tons of these. Note that if I don't use the "no guardrails" mode and use a Generable instead, some of these work fine so right now I have to do two passes on much of the content since I never know which one will work.
Having a "summary mode" that often refuses to summarize current news articles (the world is not a great place, some of these stories are a bummer) is near worthless.
I've tried creating a Lora adapter using the example dataset, scripts as part of the adapter_training_toolkit_v26_0_0 (last available) on MacOs 26 Beta 6.
import SwiftUI
import FoundationModels
import Playgrounds
#Playground {
// The absolute path to your adapter.
let localURL = URL(filePath: "/Users/syl/Downloads/adapter_training_toolkit_v26_0_0/train/test-lora.fmadapter")
// Initialize the adapter by using the local URL.
let adapter = try SystemLanguageModel.Adapter(fileURL: localURL)
// An instance of the the system language model using your adapter.
let customAdapterModel = SystemLanguageModel(adapter: adapter)
// Create a session and prompt the model.
let session = LanguageModelSession(model: customAdapterModel)
let response = try await session.respond(to: "hello")
}
I get Adapter assets are invalid error.
I've added the entitlements
Is adapter_training_toolkit_v26_0_0 up to date?
Topic:
Machine Learning & AI
SubTopic:
Foundation Models
On macOS Tahoe26.0, iOS 26.0 (23A5287g) not emulator, Xcode 26.0 beta 3 (17A5276g)
Follow this tutorial Testing your asset packs locally The start the test server command I use this command line to start the test server:xcrun ba-serve --host 192.168.0.109 test.aar The terminal showThe content displayed on the terminal is: Loading asset packs…
Loading the asset pack at “test.aar”…
Listening on port 63125…… Choose an identity in the panel to continue. Listening on port 63125…
running the project, Xcode reports an error:Download failed: Could not connect to the server. I use iPhone safari visit this website: https://192.168.0.109:63125, on the page display "Hello, world!"
There are too few error messages in both of the above questions. I have no idea what the specific reasons are.I hope someone can offer some guidance. Best Regards.
{
"assetPackID": "testVideoAssetPack",
"downloadPolicy": {
"prefetch": {
"installationEventTypes": ["firstInstallation", "subsequentUpdate"]
}
},
"fileSelectors": [
{
"file": "video/test.mp4"
}
],
"platforms": [
"iOS"
]
}
this is my Manifest.json
I generate an array of random floats using the code shown below. However, I would like to do this with Double instead of Float. Are there any BNNS random number generators for double values, something like BNNSRandomFillUniformDouble? If not, is there a way I can convert BNNSNDArrayDescriptor from float to double?
import Accelerate
let n = 100_000_000
let result = Array<Float>(unsafeUninitializedCapacity: n) { buffer, initCount in
var descriptor = BNNSNDArrayDescriptor(data: buffer, shape: .vector(n))!
let randomGenerator = BNNSCreateRandomGenerator(BNNSRandomGeneratorMethodAES_CTR, nil)
BNNSRandomFillUniformFloat(randomGenerator, &descriptor, 0, 1)
initCount = n
}