Explore the power of machine learning and Apple Intelligence within apps. Discuss integrating features, share best practices, and explore the possibilities for your app here.

All subtopics
Posts under Machine Learning & AI topic

Post

Replies

Boosts

Views

Activity

Missing module 'coremltools.libmilstoragepython'
Hello! I'm following the Foundation Models adapter training guide (https://developer.apple.com/apple-intelligence/foundation-models-adapter/) on my NVIDIA DGX Spark box. I'm able to train on my own data but the example notebook fails when I try to export the artifact as an fmadapter. I get the following error for the code block I'm trying to run. I haven't touched any of the code in the export folder. I tried exporting it on my Mac too and got the same error as well (given below). Would appreciate some more clarity around this. Thank you. Code Block: from export.export_fmadapter import Metadata, export_fmadapter metadata = Metadata( author="3P developer", description="An adapter that writes play scripts.", ) export_fmadapter( output_dir="./", adapter_name="myPlaywritingAdapter", metadata=metadata, checkpoint="adapter-final.pt", draft_checkpoint="draft-model-final.pt", ) Error: --------------------------------------------------------------------------- ModuleNotFoundError Traceback (most recent call last) Cell In[10], line 1 ----> 1 from export.export_fmadapter import Metadata, export_fmadapter 3 metadata = Metadata( 4 author="3P developer", 5 description="An adapter that writes play scripts.", 6 ) 8 export_fmadapter( 9 output_dir="./", 10 adapter_name="myPlaywritingAdapter", (...) 13 draft_checkpoint="draft-model-final.pt", 14 ) File /workspace/export/export_fmadapter.py:11 8 from typing import Any 10 from .constants import BASE_SIGNATURE, MIL_PATH ---> 11 from .export_utils import AdapterConverter, AdapterSpec, DraftModelConverter, camelize 13 logger = logging.getLogger(__name__) 16 class MetadataKeys(enum.StrEnum): File /workspace/export/export_utils.py:15 13 import torch 14 import yaml ---> 15 from coremltools.libmilstoragepython import _BlobStorageWriter as BlobWriter 16 from coremltools.models.neural_network.quantization_utils import _get_kmeans_lookup_table_and_weight 17 from coremltools.optimize._utils import LutParams ModuleNotFoundError: No module named 'coremltools.libmilstoragepython'
4
0
611
Oct ’25
My Vision for AI and Algorithmically Optimised Operating Systems
Bear with me, please. Please make sure a highly skilled technical person reads and understands this. I want to describe my vision for (AI/Algorithmically) Optimised Operating Systems. To explain it properly, I will describe the process to build it (pseudo). Required Knowledge (no particular order): Processor Logic Circuits, LLM models, LLM tool usage, Python OO coding, Procedural vs OO, NLP fuzzy matching, benchmarking, canvas/artefacts/dynamic HTML interfaces, concepts of how AI models are vastly compressed and miniaturised forms of full data, Algorithmic vs AI. First, take all OO Python code (example) on GitHub (example), then separate each function from each object into its own procedure (procedural logic) by making a logical procedural list of actions to perform only that function based on its entire dependency chain (i.e. all other objects it relies on). Relate all compiled functions using (for example) fuzzy matching on the name, or AI-based functional profiling to get multiple instances of each function. Starting with the most used function, test each one against the others that perform the same task for bugs and completeness. Determine the fastest, most optimal version of that function (and every function). Add a single instance of each most optimal function to the centralised tool codebase, which will later be utilised by the language models. This ensures we rely only on the most optimised function for each and every use case — with every program using one shared instance of that function instead of compiling it separately. In this way, we optimise all existing (Python OO) code based on maximum availability of certain resources. Use the optimised code to teach the AI how to map each user task directly to optimised code (i.e. each user-facing function in unoptimised program code to its optimised version). Later, teach the codebase how to optimise these functions directly to the logic circuits on the processor — as an Operating System — using essentially the same process. Eventually, use the most optimised form for tasks via a dynamic canvas/artefacts UI interface generated by the Start Menu using the language model. Allow custom interfaces to emerge dynamically from the available functions based on language understanding. Grow and optimise the algorithmic codebase until the entire operating system — with versioning — evolves based on the AI-generated user interfaces (compressing them into new versions of the tools codebase). Please don’t give up until you understand this concept completely and nothing in the description is beyond your full comprehension. It’s a highly significant step forward.
3
0
321
Oct ’25
Best practices for designing proactive FinTech insights with App Intents & Shortcuts?
Hello fellow developers, I'm the founder of a FinTech startup, Cent Capital (https://cent.capital), where we are building an AI-powered financial co-pilot. We're deeply exploring the Apple ecosystem to create a more proactive and ambient user experience. A core part of our vision is to use App Intents and the Shortcuts app to surface personalized financial insights without the user always needing to open our app. For example, suggesting a Shortcut like, "What's my spending in the 'Dining Out' category this month?" or having an App Intent proactively surface an insight like, "Your 'Subscriptions' budget is almost full." My question for the community is about the architectural and user experience best practices for this. How are you thinking about the balance between providing rich, actionable insights via Intents without being overly intrusive or "spammy" to the user? What are the best practices for designing the data model that backs these App Intents for a complex domain like personal finance? Are there specific performance or privacy considerations we should be aware of when surfacing potentially sensitive financial data through these system-level integrations? We believe this is the future of FinTech apps on iOS and would love to hear how other developers are thinking about this challenge. Thanks for your insights!
0
0
273
Oct ’25
CoreML Model Conversion Help
I’m trying to follow Apple’s “WWDC24: Bring your machine learning and AI models to Apple Silicon” session to convert the Mistral-7B-Instruct-v0.2 model into a Core ML package, but I’ve run into a roadblock that I can’t seem to overcome. I’ve uploaded my full conversion script here for reference: https://pastebin.com/T7Zchzfc When I run the script, it progresses through tracing and MIL conversion but then fails at the backend_mlprogram stage with this error: https://pastebin.com/fUdEzzKM The core of the error is: ValueError: Op "keyCache_tmp" (op_type: identity) Input x="keyCache" expects list, tensor, or scalar but got state[tensor[1,32,8,2048,128,fp16]] I’ve registered my KV-cache buffers in a StatefulMistralWrapper subclass of nn.Module, matching the keyCache and valueCache state names in my ct.StateType definitions, but Core ML’s backend pass reports the state tensor as an invalid input. I’m using Core ML Tools 8.3.0 on Python 3.9.6, targeting iOS18, and forcing CPU conversion (MPS wasn’t available). Any pointers on how to satisfy the handle_unused_inputs pass or properly declare/cache state for GQA models in Core ML would be greatly appreciated! Thanks in advance for your help, Usman Khan
0
0
224
May ’25
Stream response
With respond() methods, the foundation model works well enough. With streamResponse() methods, the responses are very repetitive, verbose, and messy. My app with foundation model uses more than 500 MB memory on an iPad Pro when running from Xcode. Devices supporting Apple Intelligence have at least 8GB memory. Should Apple use a bigger model (using 3 ~ 4 GB memory) for better stream responses?
2
0
272
Jul ’25
Swift playgrounds (.swiftpm) and CoreML
Hey guys, I've been having difficulties transferring my Xcode project to a Swift playground (.swiftpm) for the Swift Student Challenge. I keep getting these errors as well as none of the views being able to find the model in scope: "TrashDetector 1.mlmodel: No predominant language detected. Set COREML_CODEGEN_LANGUAGE to preferred language." Unexpected duplicate tasks: Target 'TrashQuest' (project 'TrashQuest') has write command with output /Users/kmcph3/Library/Developer/Xcode/DerivedData/TrashQuest-glvzskunedgtakfrdmsxdoplondj/Build/Intermediates.noindex/TrashQuest.build/Debug-iphonesimulator/TrashQuest.build/0a4ef2429d66360920ddb4f16e65e233.sb I've gone through multiple post with these exact problems, but they all seem to be talking about ".playground" files due to the "Resources" folder (mind you I did try exactly what they said). Is there anyone that can help??? (Quick side note, why does it need to be a swiftpm file for the SSC??? Like why can't we just send the zip of our Xcode project??)
2
0
858
Feb ’25
Apple's Illusion of Thinking paper and Path to Real AI Reasoning
Hey everyone I'm Manish Mehta, field CTO at Centific. I recently read Apple's white paper, The Illusion of Thinking and it got me thinking about the current state of AI reasoning. Who here has read it? The paper highlights how LLMs often rely on pattern recognition rather than genuine understanding. When faced with complex tasks, their performance can degrade significantly. I was just thinking that to move beyond this problem, we need to explore approaches that combines Deeper Reasoning Architectures for true cognitive capability with Deep Human Partnership to guide AI toward better judgment and understanding. The first part means fundamentally rewiring AI to reason. This involves advancing deeper architectures like World Models, which can build internal simulations to understand real-world scenarios , and Neurosymbolic systems, which combines neural networks with symbolic reasoning for deeper self-verification. Additionally, we need to look at deep human partnership and scalable oversight. An AI cannot learn certain things from data alone, it lacks the real-world judgment an AI will never have. Among other things, deep domain expert human partners are needed to instill this wisdom , validate the AI's entire reasoning process , build its ethical guardrails , and act as skilled adversaries to find hidden flaws before they can cause harm. What do you all think? Is this focus on a deeper partnership between advanced AI reasoning and deep human judgment the right path forward? Agree? Disagree? Thanks
2
0
291
Jul ’25
Compatibility issue of TensorFlow-metal with PyArrow
Overview I'm experiencing a critical issue where TensorFlow-metal and PyArrow seem to be incompatible when installed together in the same environment. Whenever both packages are present, TensorFlow crashes and the kernel dies during execution. Environment Details Environment Details macOS Version: 15.3.2 Mac Model: MacBook Pro Max M3 Python Version: 3.11 TensorFlow Version: 2.19 PyArrow Version: 19.0.0 Issue Description: When both TensorFlow-metal and PyArrow are installed in the same Python environment, any attempt to use TensorFlow results in immediate kernel crashes. The issue appears to be a compatibility problem between these two packages rather than a problem with either package individually. Steps to Reproduce Create a new Python environment: conda create -n tf-metal python=3.11 Install TensorFlow-metal: pip install tensorflow tensorflow-metal Install PyArrow: pip install pyarrow Run the following minimal example: # Create a simple model model = tf.keras.Sequential([ tf.keras.layers.Input(shape=(2,)), tf.keras.layers.Dense(1) ]) model.compile(optimizer='adam', loss='mse') model.summary() # This works fine # Generate some dummy data X = np.random.random((100, 2)) y = np.random.random((100, 1)) # The crash happens exactly at this line model.fit(X, y, epochs=5, batch_size=32) # CRASH: Kernel dies here Result: Kernel crashes with no error message What I've Tried Reinstalling both packages in different orders Using different versions of both packages Creating isolated environments Checking system logs for additional error information The only workaround I've found is to use separate environments for each package, which isn't practical for my workflow as I need both libraries for my data processing and machine learning pipeline. Questions Has anyone else encountered this specific compatibility issue? Are there known workarounds that allow both packages to coexist? Is this a known issue that's being addressed in upcoming releases? Any insights, suggestions, or assistance would be greatly appreciated. I'm happy to provide any additional information that might help diagnose this problem. Thank you in advance for your help! Thank you in advance for your help!
2
0
129
May ’25
Initializing session with transcript ignores tools
When I initialize a session with an existing transcript using this initializer: public convenience init(model: SystemLanguageModel = .default, guardrails: LanguageModelSession.Guardrails = .default, tools: [any Tool] = [], transcript: Transcript) The tools get ignored. I noticed that when doing that, the model never use the tools. When inspecting the transcript, I can see that the instruction entry does not have any tools available to it. I tried this for both transcripts that already include an instruction entry and ones that don't - both yielding the same result.. Is this the intended behavior / am I missing something here?
1
0
214
Jul ’25
Failed to build the model execution plan using a model architecture file
Our app is downloading a zip of an .mlpackage file, which is then compiled into an .mlmodelc file using MLModel.compileModel(at:). This model is then run using a VNCoreMLRequest. Two users – and this after a very small rollout - are reporting issues running the VNCoreMLRequest. The error message from their logs: Error Domain=com.apple.CoreML Code=0 "Failed to build the model execution plan using a model architecture file '/private/var/mobile/Containers/Data/Application/F93077A5-5508-4970-92A6-03A835E3291D/Documents/SKDownload/Identify-image-iOS/mobile_img_eu_v210.mlmodelc/model.mil' with error code: -5." The URL there is to a file inside the compiled model. The error is happening when the perform function of VNImageRequestHandler is run. (i.e. the model compiled without an error.) Anyone else seen this issue? Its only picked up in a few web results and none of them are directly relevant or have a fix. I know that a CoreML error Code=0 is a generic error, but does anyone know what error code -5 is? Not even sure which framework its coming from.
1
0
310
Mar ’25
What's the best way to load adapters to try?
I'm new to Swift and was hoping the Playground would support loading adaptors. When I tried, I got a permissions error - thinking it's because it's not in the project and Playgrounds don't like going outside the project? A tutorial and some sample code would be helpful. Also some benchmarks on how long it's expected to take. Selfishly I'm on an M2 Mac Mini.
1
0
297
Jul ’25
Foundation Model Always modelNotReady
I'm testing Foundation Model on my iPad Pro (5th gen) iOS 26. Up until late this morning, I can no longer load the SystemLanguageModel.default. I'm not doing anything interesting, something as basic as this is only going to unavailable, specifically I get unavailable reason: modelNotReady. let model = SystemLanguageModel.default ... switch model.availability { case .available: print("LM available") case .unavailable(let reason): print("unavailable reason: ", String(describing: reason)) } I also ran the FoundationModelsTripPlanner app, same thing. It was working yesterday, I have not modified that project either. Why is the Model not ready? How do I fix this? Yes, I tried restarting both my laptop and iPad, no luck.
3
0
278
Jul ’25
Does Generable support recursive schemas?
I've run into an issue with a small Foundation Models test with Generable. I'm getting a strange error message with this Generable. I was able to get simpler ones to work. Is this because the Generable is recursive with a property of [HTMLDiv]? The error message is: FoundationModels/SchemaAugmentor.swift:209: Fatal error: 'try!' expression unexpectedly raised an error: FoundationModels.GenerationSchema.SchemaError.undefinedReferences(schema: Optional("SafeResponse<HTMLDiv>"), references: ["HTMLDiv"], context: FoundationModels.GenerationSchema.SchemaError.Context(debugDescription: "Undefined types: [HTMLDiv]", underlyingErrors: [])) The code is: import FoundationModels import Playgrounds @Generable struct HTMLDiv { @Guide(description: "Optional named ID, useful for nicknames") var id: String? = nil @Guide(description: "Optional visible HTML text") var textContent: String? = nil @Guide(description: "Any child elements", .count(0...10)) var children: [HTMLDiv] = [] static var sample: HTMLDiv { HTMLDiv( id: "profileToolbar", children: [ HTMLDiv(textContent: "Log in"), HTMLDiv(textContent: "Sign up"), ] ) } } #Playground { do { let session = LanguageModelSession { "Your job is to generate simple HTML markup" "Here is an example response to the prompt: 'Make a profile toolbar':" HTMLDiv.sample } let response = try await session.respond( to: "Make a sign up form", generating: HTMLDiv.self ) print(response.content) } catch { print(error) } }
4
0
170
Jul ’25
Unexpectedly slow CreateML text classifier training (limited GPU/CPU usage)
While training a text classifier model with a few thousand samples completes in seconds, when using 100,000 or 1 million samples, CreateML's training time increases exponentially (to hours or days). During these hours/days, GPU usage is low and almost every CPU core is idle. When using the Swift APIs for model training, resource utilization does not increase. I'm using Xcode 16.2, macOS 15.2 on either an M2 Ultra 64 GB or an M3 Max 48 GB laptop (both using built-in SSD with ~500 GB free) running no other applications. Is there a setting I've missed to allow training to take over more of my computing resources? Is this expected of CreateML (i.e., when looking to exploit a larger corpus, I should move to other tooling)? I'd love to speed up my iteration cycle time.
1
0
673
Feb ’25
Selecting GPU for TensorFlow-Metal on Mac Pro (2013) with v0.8.0
Hi everyone, I'm a Mac enthusiast experimenting with tensorflow-metal on my Mac Pro (2013). My question is about GPU selection in tensorflow-metal (v0.8.0), which still supports Intel-based Macs, including my machine. I've noticed that when running TensorFlow with Metal, it automatically selects a GPU, regardless of what I specify using device indices like "gpu:0", "gpu:1", or "gpu:2". I'm wondering if there's a way to manually specify which GPU should be used via an environment variable or another method. For reference, I’ve tried the example from TensorFlow’s guide on multi-GPU selection: https://www.tensorflow.org/guide/gpu#using_a_single_gpu_on_a_multi-gpu_system My goal is to explore performance optimizations by using MirroredStrategy in TensorFlow to leverage multiple GPUs: https://www.tensorflow.org/guide/distributed_training#mirroredstrategy Interestingly, I discovered that the metalcompute Python library (https://pypi.org/project/metalcompute/) allows to utilize manually selected GPUs on my system, allowing for proper multi-GPU computations. This makes me wonder: Is there a hidden environment variable or setting that allows manual GPU selection in tensorflow-metal? Has anyone successfully used MirroredStrategy on multiple GPUs with tensorflow-metal? Would a bridge between metalcompute and tensorflow-metal be necessary for this use case, or is there a more direct approach? I’d love to hear if anyone else has experimented with this or has insights on getting finer control over GPU selection. Any thoughts or suggestions would be greatly appreciated! Thanks!
3
0
264
Mar ’25
Training Images for Vision Classifier Model - Swift Student Challenge
I'm working on my Swift Student Challenge submission and developing a Vision framework-based image classifier. I want to ensure I'm following best practices for training data and follow to guidelines for what images I use to train my image classifier. What types of images can I use for training my model? Are there specific image databases or resources recommended by Apple that are safe to use for Swift Student Challenge submissions? Currently considering images used from wikipedia, and my own images
1
0
509
Feb ’25