Explore the power of machine learning and Apple Intelligence within apps. Discuss integrating features, share best practices, and explore the possibilities for your app here.

All subtopics
Posts under Machine Learning & AI topic

Post

Replies

Boosts

Views

Created

Automated Testing and Performance Validation for Foundation Models Framework
I've been successfully integrating the Foundation Models framework into my healthcare app using structured generation with @Generable schemas. While my initial testing (20-30 iterations) shows promising results, I need to validate consistency and reliability at scale before production deployment. Question Is there a recommended approach for automated, large-scale testing of Foundation Models responses? Specifically, I'm looking to: Automate 1000+ test iterations with consistent prompts and structured schemas Measure response consistency across identical inputs Validate structured output reliability (proper schema adherence, no generation failures) Collect performance metrics (TTFT, TPS) for optimization Specific Questions Framework Limitations: Are there any undocumented rate limits or thermal throttling considerations for rapid session creation/destruction? Performance Tools: Can Xcode's Foundation Models Instrument be used programmatically, or only through Instruments UI? Automation Integration: Any recommendations for integrating with testing frameworks? Session Reuse: Is it better to reuse a single LanguageModelSession or create fresh sessions for each test iteration? Use Case Context My wellness app provides medically safe activity recommendations based on user health profiles. The Foundation Models framework processes health context and generates structured recommendations for exercises, nutrition, and lifestyle activities. Given the safety implications of providing health-related guidance, I need rigorous validation to ensure the model consistently produces appropriate, well-formed recommendations across diverse user scenarios and health conditions. Has anyone in the community built similar large-scale testing infrastructure for Foundation Models? Any insights on best practices or potential pitfalls would be greatly appreciated.
1
0
198
Jul ’25
OpenIntent not executed with Visual Intelligence
I'm building a new feature with Visual Intelligence framework. My implementation for IndexedEntity and IntentValueQuery worked as expected and I can see a list of objects in visual search result. However, my OpenIntent doesn't work. When I tap on the object, I got a message on screen "Sorry somethinf went wrong ...". and the breakpoint in perform() is never triggered. Things I've tried: I added @MainActor before perform(), this didn't change anything I set static let openAppWhenRun: Bool = true and static var supportedModes: IntentModes = [.foreground(.immediate)], still nothing I created a different intent for the see more button at the end of feed. This AppIntent with schema: .visualIntelligence.semanticContentSearch worked, perform() is executed
10
0
357
Jul ’25
ImageCreator fails with GenerationError Code=11 on Apple Intelligence-enabled device
When I ran the following code on a physical iPhone device that supports Apple Intelligence, I encountered the following error log. What does this internal error code mean? Image generation failed with NSError in a different domain: Error Domain=ImagePlaygroundInternal.ImageGeneration.GenerationError Code=11 “(null)”, returning a generic error instead let imageCreator = try await ImageCreator() let style = imageCreator.availableStyles.first ?? .animation let stream = imageCreator.images(for: [.text("cat")], style: style, limit: 1) for try await result in stream { // error: ImagePlayground.ImageCreator.Error.creationFailed _ = result.cgImage }
0
1
254
Jul ’25
Does ImageRequestHandler(data:) include depth data from AVCapturePhoto?
Hi all, I'm capturing a photo using AVCapturePhotoOutput, and I've set: let photoSettings = AVCapturePhotoSettings() photoSettings.isDepthDataDeliveryEnabled = true Then I create the handler like this: let data = photo.fileDataRepresentation() let handler = try ImageRequestHandler(data: data, orientation: .right) Now I’m wondering: If depth data delivery is enabled, is it actually included and used when I pass the Data to ImageRequestHandler? Or do I need to explicitly pass the depth data using the other initializer? let handler = try ImageRequestHandler( cvPixelBuffer: photo.pixelBuffer!, depthData: photo.depthData, orientation: .right ) In short: Does ImageRequestHandler(data:) make use of embedded depth info from AVCapturePhoto.fileDataRepresentation() — or is the pixel buffer + explicit depth data required? Thanks for any clarification!
1
0
251
Jul ’25
Getting FoundationsModel running in Simulator
I have a mac (M4, MacBook Pro) running Tahoe 26.0 beta. I am running Xcode beta. I can run code that uses the LLM in a #Preview { }. But when I try to run the same code in the simulator, I get the 'device not ready' error and I see the following in the Settings app. Is there anything I can do to get the simulator to past this point and allowing me to test on it with Apple's LLM?
3
0
359
Jul ’25
Foundation Models flags 'Six Flags Great America' as unsafe
I'm working on a to-do list app that uses SpeechTranscriber and Foundation Models framework to transcribe a user's voice into text and create to-do items based off of it. After about 30 minutes looking at my code, I couldn't figure out why I was failing to generate a to-do for "I need to go to Six Flags Great America tomorrow at 3pm." It turns out, I was consistently firing the Foundation Models's safety filter violation for unsafe content ("May contain unsafe content"). Lesson learned: consider comprehensively logging Foundation Models error states to quickly identify when safety filters are unexpectedly triggered.
3
1
500
Jul ’25
Core Spotlight Semantic Search - still non-functional for 1+ year after WWDC24?
After more than a year since the announcement, I'm still unable to get this feature working properly and wondering if there are known issues or missing implementation details. Current Setup: Device: iPhone 16 Pro Max iOS: 26 beta 3 Development: Tested on both Xcode 16 and Xcode 26 Implementation: Following the official documentation examples The Problem: Semantic search simply doesn't work. Lexical search functions normally, but enabling semantic search produces identical results to having it disabled. It's as if the feature isn't actually processing. Error Output (Xcode 26): [QPNLU][qid=5] Error Domain=com.apple.SpotlightEmbedding.EmbeddingModelError Code=-8007 "Text embedding generation timeout (timeout=100ms)" [CSUserQuery][qid=5] got a nil / empty embedding data dictionary [CSUserQuery][qid=5] semanticQuery failed to generate, using "(false)" In Xcode 16, there are no error messages at all - the semantic search just silently fails. Missing Resources: The sample application mentioned during the WWDC24 presentation doesn't appear to have been released, which makes it difficult to verify if my implementation is correct. Would really appreciate any guidance or clarification on the current status of this feature. Has anyone in the community successfully implemented this?
2
4
1.2k
Jul ’25
Rate limit exceeded when using Foundation Model framework
When I use the FoundationModel framework to generate long text, it will always hit an error. "Passing along Client rate limit exceeded, try again later in response to ExecuteRequest" And stop generating. eg. for the prompt "Write a long story", it will almost certainly hit that error after 17 seconds of generation. do{ let session = LanguageModelSession() let prompt: String = "Write a long story" let response = try await session.respond(to: prompt) }catch{} If possible, I want to know how to prevent that error or at least how to handle it.
2
1
705
Jul ’25
Selecting an output language with Foundation Models
When using Foundation Models, is it possible to ask the model to produce output in a specific language, apart from giving an instruction like "Provide answers in ." ? (I tried that and it kind of worked, but it seems fragile.) I haven't noticed an API to do so and have a use-case where the output should be in a user-selectable language that is not the current system language.
3
1
506
Jul ’25
Unavailable error is wrong?
This is my code: witch SystemLanguageModel.default.availability { case .available: ContentView() .popover(isPresented: $showSettings) { SettingsView().presentationCompactAdaptation(.popover) } case .unavailable(.modelNotReady): ContentUnavailableView("Apple Intelligence is unavailable", systemImage: "apple.intelligence.badge.xmark", description: Text("Please come back later.")) case .unavailable(.appleIntelligenceNotEnabled): ContentUnavailableView("Apple Intelligence is unavailable", systemImage: "apple.intelligence.badge.xmark", description: Text("Please turn on Apple Intelligence.")) case .unavailable(.deviceNotEligible): ContentUnavailableView("Apple Intelligence is unavailable", systemImage: "apple.intelligence.badge.xmark", description: Text("This device is not eligible for Apple Intelligence.")) case .unavailable: ContentUnavailableView("Apple Intelligence is unavailable", systemImage: "apple.intelligence.badge.xmark") } When I switch off Apple Intelligence, I expected "Please turn on Apple Intelligence.", but instead I get "Please come back later." This seems to be wrong error?
1
0
275
Jul ’25
Using Past Versions of Foundation Models As They Progress
Has Apple made any commitment to versioning the Foundation Models on device? What if you build a feature that works great on 26.0 but they change the model or guardrails in 26.1 and it breaks your feature, is your only recourse filing Feedback or pulling the feature from the app? Will there be a way to specify a model version like in all of the server based LLM provider APIs? If not, sounds risky to build on.
7
0
310
Jul ’25
AttributedString in App Intents
In this WWDC25 session, it is explictely mentioned that apps should support AttributedString for text parameters to their App Intents. However, I have not gotten this to work. Whenever I pass rich text (either generated by the new "Use Model" intent or generated manually for example using "Make Rich Text from Markdown"), my Intent gets an AttributedString with the correct characters, but with all attributes stripped (so in effect just plain text). struct TestIntent: AppIntent { static var title = LocalizedStringResource(stringLiteral: "Test Intent") static var description = IntentDescription("Tests Attributed Strings in Intent Parameters.") @Parameter var text: AttributedString func perform() async throws -> some IntentResult & ReturnsValue<AttributedString> { return .result(value: text) } } Is there anything else I am missing?
0
0
216
Jul ’25
Dynamically Create Tool Argument Type
According to the Tool documentation, the arguments to the tool are specified as a static struct type T, which is given to tool.call(argument: T) However, if the arguments are not known until runtime, is it possible to still create a Tool object with the proper parameters? Let's say a JSON-style dictionary is passed into the Tool init function to specify T, is this achievable?
1
0
450
Jul ’25
ModelManager received unentitled request. Expected entitlement com.apple.modelmanager.inference
Just tried to write a very simple test of using foundation models, but it gave me the error like this "ModelManager received unentitled request. Expected entitlement com.apple.modelmanager.inference establishment of session failed with Missing entitlement: com.apple.modelmanager.inference" The simple code is listed below: let session: LanguageModelSession = LanguageModelSession() let response = try? await session.respond(to: "What is the capital of France?") print("Response: (response)") So what's the problem of this one?
2
0
245
Jul ’25
Is it allowed for an iOS app to download machine learning model files (e.g., .mlmodel, .onnx) from a separate cloud server?
Hello, I am developing an iOS app that uses machine learning models. To improve accuracy and user experience, I would like to download .mlmodel files (compiled and compressed as zip files) from our own server after the app is installed, and use them for inference within the app. No executable code, scripts, or dynamic libraries will be downloaded—only model data files are used. According to App Store Review Guideline 2.5.2, I understand that apps may not download or execute code which introduces or changes features or functionality. In this case, are compiled and zip-compressed .mlmodel files considered "data" rather than "code", and is it allowed to download and use them in the app? If there are any restrictions or best practices related to this, please let me know. Thank you.
1
0
356
Jul ’25
WWDC25 combining metal and ML
WWDC25: Combine Metal 4 machine learning and graphics Demonstrated a way to combine neural network in the graphics pipeline directly through the shaders, using an example of Texture Compression. However there is no mention of using which ML technique texture is compressed. Can anyone point me to some well known model/s for this particular use case shown in WWDC25.
2
0
427
Jul ’25