Explore the power of machine learning and Apple Intelligence within apps. Discuss integrating features, share best practices, and explore the possibilities for your app here.

All subtopics
Posts under Machine Learning & AI topic

Post

Replies

Boosts

Views

Activity

Issues with using ClassifyImageRequest() on an Xcode simulator
Hello, I am developing an app for the Swift Student challenge; however, I keep encountering an error when using ClassifyImageRequest from the Vision framework in Xcode: VTEST: error: perform(_:): inside 'for await result in resultStream' error: internalError("Error Domain=NSOSStatusErrorDomain Code=-1 \"Failed to create espresso context.\" UserInfo={NSLocalizedDescription=Failed to create espresso context.}") It works perfectly when testing it on a physical device, and I saw on another thread that ClassifyImageRequest doesn't work on simulators. Will this cause problems with my submission to the challenge? Thanks
5
1
816
Feb ’25
Stream response
With respond() methods, the foundation model works well enough. With streamResponse() methods, the responses are very repetitive, verbose, and messy. My app with foundation model uses more than 500 MB memory on an iPad Pro when running from Xcode. Devices supporting Apple Intelligence have at least 8GB memory. Should Apple use a bigger model (using 3 ~ 4 GB memory) for better stream responses?
2
0
271
Jul ’25
Apple's Illusion of Thinking paper and Path to Real AI Reasoning
Hey everyone I'm Manish Mehta, field CTO at Centific. I recently read Apple's white paper, The Illusion of Thinking and it got me thinking about the current state of AI reasoning. Who here has read it? The paper highlights how LLMs often rely on pattern recognition rather than genuine understanding. When faced with complex tasks, their performance can degrade significantly. I was just thinking that to move beyond this problem, we need to explore approaches that combines Deeper Reasoning Architectures for true cognitive capability with Deep Human Partnership to guide AI toward better judgment and understanding. The first part means fundamentally rewiring AI to reason. This involves advancing deeper architectures like World Models, which can build internal simulations to understand real-world scenarios , and Neurosymbolic systems, which combines neural networks with symbolic reasoning for deeper self-verification. Additionally, we need to look at deep human partnership and scalable oversight. An AI cannot learn certain things from data alone, it lacks the real-world judgment an AI will never have. Among other things, deep domain expert human partners are needed to instill this wisdom , validate the AI's entire reasoning process , build its ethical guardrails , and act as skilled adversaries to find hidden flaws before they can cause harm. What do you all think? Is this focus on a deeper partnership between advanced AI reasoning and deep human judgment the right path forward? Agree? Disagree? Thanks
2
0
291
Jul ’25
Compatibility issue of TensorFlow-metal with PyArrow
Overview I'm experiencing a critical issue where TensorFlow-metal and PyArrow seem to be incompatible when installed together in the same environment. Whenever both packages are present, TensorFlow crashes and the kernel dies during execution. Environment Details Environment Details macOS Version: 15.3.2 Mac Model: MacBook Pro Max M3 Python Version: 3.11 TensorFlow Version: 2.19 PyArrow Version: 19.0.0 Issue Description: When both TensorFlow-metal and PyArrow are installed in the same Python environment, any attempt to use TensorFlow results in immediate kernel crashes. The issue appears to be a compatibility problem between these two packages rather than a problem with either package individually. Steps to Reproduce Create a new Python environment: conda create -n tf-metal python=3.11 Install TensorFlow-metal: pip install tensorflow tensorflow-metal Install PyArrow: pip install pyarrow Run the following minimal example: # Create a simple model model = tf.keras.Sequential([ tf.keras.layers.Input(shape=(2,)), tf.keras.layers.Dense(1) ]) model.compile(optimizer='adam', loss='mse') model.summary() # This works fine # Generate some dummy data X = np.random.random((100, 2)) y = np.random.random((100, 1)) # The crash happens exactly at this line model.fit(X, y, epochs=5, batch_size=32) # CRASH: Kernel dies here Result: Kernel crashes with no error message What I've Tried Reinstalling both packages in different orders Using different versions of both packages Creating isolated environments Checking system logs for additional error information The only workaround I've found is to use separate environments for each package, which isn't practical for my workflow as I need both libraries for my data processing and machine learning pipeline. Questions Has anyone else encountered this specific compatibility issue? Are there known workarounds that allow both packages to coexist? Is this a known issue that's being addressed in upcoming releases? Any insights, suggestions, or assistance would be greatly appreciated. I'm happy to provide any additional information that might help diagnose this problem. Thank you in advance for your help! Thank you in advance for your help!
2
0
129
May ’25
What's the best way to load adapters to try?
I'm new to Swift and was hoping the Playground would support loading adaptors. When I tried, I got a permissions error - thinking it's because it's not in the project and Playgrounds don't like going outside the project? A tutorial and some sample code would be helpful. Also some benchmarks on how long it's expected to take. Selfishly I'm on an M2 Mac Mini.
1
0
297
Jul ’25
Swift playgrounds (.swiftpm) and CoreML
Hey guys, I've been having difficulties transferring my Xcode project to a Swift playground (.swiftpm) for the Swift Student Challenge. I keep getting these errors as well as none of the views being able to find the model in scope: "TrashDetector 1.mlmodel: No predominant language detected. Set COREML_CODEGEN_LANGUAGE to preferred language." Unexpected duplicate tasks: Target 'TrashQuest' (project 'TrashQuest') has write command with output /Users/kmcph3/Library/Developer/Xcode/DerivedData/TrashQuest-glvzskunedgtakfrdmsxdoplondj/Build/Intermediates.noindex/TrashQuest.build/Debug-iphonesimulator/TrashQuest.build/0a4ef2429d66360920ddb4f16e65e233.sb I've gone through multiple post with these exact problems, but they all seem to be talking about ".playground" files due to the "Resources" folder (mind you I did try exactly what they said). Is there anyone that can help??? (Quick side note, why does it need to be a swiftpm file for the SSC??? Like why can't we just send the zip of our Xcode project??)
2
0
858
Feb ’25
Failed to build the model execution plan using a model architecture file
Our app is downloading a zip of an .mlpackage file, which is then compiled into an .mlmodelc file using MLModel.compileModel(at:). This model is then run using a VNCoreMLRequest. Two users – and this after a very small rollout - are reporting issues running the VNCoreMLRequest. The error message from their logs: Error Domain=com.apple.CoreML Code=0 "Failed to build the model execution plan using a model architecture file '/private/var/mobile/Containers/Data/Application/F93077A5-5508-4970-92A6-03A835E3291D/Documents/SKDownload/Identify-image-iOS/mobile_img_eu_v210.mlmodelc/model.mil' with error code: -5." The URL there is to a file inside the compiled model. The error is happening when the perform function of VNImageRequestHandler is run. (i.e. the model compiled without an error.) Anyone else seen this issue? Its only picked up in a few web results and none of them are directly relevant or have a fix. I know that a CoreML error Code=0 is a generic error, but does anyone know what error code -5 is? Not even sure which framework its coming from.
1
0
310
Mar ’25
Selecting GPU for TensorFlow-Metal on Mac Pro (2013) with v0.8.0
Hi everyone, I'm a Mac enthusiast experimenting with tensorflow-metal on my Mac Pro (2013). My question is about GPU selection in tensorflow-metal (v0.8.0), which still supports Intel-based Macs, including my machine. I've noticed that when running TensorFlow with Metal, it automatically selects a GPU, regardless of what I specify using device indices like "gpu:0", "gpu:1", or "gpu:2". I'm wondering if there's a way to manually specify which GPU should be used via an environment variable or another method. For reference, I’ve tried the example from TensorFlow’s guide on multi-GPU selection: https://www.tensorflow.org/guide/gpu#using_a_single_gpu_on_a_multi-gpu_system My goal is to explore performance optimizations by using MirroredStrategy in TensorFlow to leverage multiple GPUs: https://www.tensorflow.org/guide/distributed_training#mirroredstrategy Interestingly, I discovered that the metalcompute Python library (https://pypi.org/project/metalcompute/) allows to utilize manually selected GPUs on my system, allowing for proper multi-GPU computations. This makes me wonder: Is there a hidden environment variable or setting that allows manual GPU selection in tensorflow-metal? Has anyone successfully used MirroredStrategy on multiple GPUs with tensorflow-metal? Would a bridge between metalcompute and tensorflow-metal be necessary for this use case, or is there a more direct approach? I’d love to hear if anyone else has experimented with this or has insights on getting finer control over GPU selection. Any thoughts or suggestions would be greatly appreciated! Thanks!
3
0
264
Mar ’25
Does Generable support recursive schemas?
I've run into an issue with a small Foundation Models test with Generable. I'm getting a strange error message with this Generable. I was able to get simpler ones to work. Is this because the Generable is recursive with a property of [HTMLDiv]? The error message is: FoundationModels/SchemaAugmentor.swift:209: Fatal error: 'try!' expression unexpectedly raised an error: FoundationModels.GenerationSchema.SchemaError.undefinedReferences(schema: Optional("SafeResponse<HTMLDiv>"), references: ["HTMLDiv"], context: FoundationModels.GenerationSchema.SchemaError.Context(debugDescription: "Undefined types: [HTMLDiv]", underlyingErrors: [])) The code is: import FoundationModels import Playgrounds @Generable struct HTMLDiv { @Guide(description: "Optional named ID, useful for nicknames") var id: String? = nil @Guide(description: "Optional visible HTML text") var textContent: String? = nil @Guide(description: "Any child elements", .count(0...10)) var children: [HTMLDiv] = [] static var sample: HTMLDiv { HTMLDiv( id: "profileToolbar", children: [ HTMLDiv(textContent: "Log in"), HTMLDiv(textContent: "Sign up"), ] ) } } #Playground { do { let session = LanguageModelSession { "Your job is to generate simple HTML markup" "Here is an example response to the prompt: 'Make a profile toolbar':" HTMLDiv.sample } let response = try await session.respond( to: "Make a sign up form", generating: HTMLDiv.self ) print(response.content) } catch { print(error) } }
4
0
170
Jul ’25
Unexpectedly slow CreateML text classifier training (limited GPU/CPU usage)
While training a text classifier model with a few thousand samples completes in seconds, when using 100,000 or 1 million samples, CreateML's training time increases exponentially (to hours or days). During these hours/days, GPU usage is low and almost every CPU core is idle. When using the Swift APIs for model training, resource utilization does not increase. I'm using Xcode 16.2, macOS 15.2 on either an M2 Ultra 64 GB or an M3 Max 48 GB laptop (both using built-in SSD with ~500 GB free) running no other applications. Is there a setting I've missed to allow training to take over more of my computing resources? Is this expected of CreateML (i.e., when looking to exploit a larger corpus, I should move to other tooling)? I'd love to speed up my iteration cycle time.
1
0
673
Feb ’25
Max tokens for Foundation Models
Do we know what a safe max token limit is? After some iterating, I have come to believe 4096 might be the limit on device. Could you help me out by answering any of these questions: Is 4096 the correct limit? Do all devices have the same limit? Will the limit change over time or by device? The errors I get when going over the limit do not seem to say, hey you are over, so it's just by trial and error that I figure these issues out. Thanks for the fun new toys. Regards, Rob
2
0
262
Jul ’25
ML models failed to decrypt and load
We have suddenly encountered a serious issue: our local ML models are no longer being decrypted. Everything was set up according to the guide at https://developer.apple.com/documentation/coreml/generating-a-model-encryption-key and had been working in production, but yesterday we started receiving the following error: Error Domain=com.apple.CoreML Code=8 "Fetching decryption key from server failed: noEntryFound("No records found"). Make sure the encryption key was generated with correct team ID." UserInfo={NSLocalizedDescription=Fetching decryption key from server failed: noEntryFound("No records found"). Make sure the encryption key was generated with correct team ID.} We haven’t changed anything in our code. This started spontaneously affecting users of the release version as of yesterday. It also no longer works locally — we receive the same error at the moment the autogenerated function is called: class func load(configuration: MLModelConfiguration = MLModelConfiguration(), completionHandler handler: @escaping (Swift.Result<ZingPDModel, Error>) -> Void) I assume that I can generate a new key through Xcode, integrate it in place of the old one, and it might start working again. However, this won’t affect existing users until they update the app. Could the issue be on Apple’s infrastructure side?
1
0
365
Jul ’25
Metal GPU Work Won't Stop
Is there any way to stop GPU work running that is scheduled using metal? Long shader calculations don't stop when application is stopped in Xcode and continue to take up GPU time and affect the display. Why is this functionality not available when Swift Tasks are able to be canceled?
2
0
784
Feb ’25
Will Apple Intelligence Support Third-Party LLMs or Custom AI Agent Integrations?
Hi everyone, I’m an AI engineer working on autonomous AI agents and exploring ways to integrate them into the Apple ecosystem, especially via Siri and Apple Intelligence. I was impressed by Apple’s integration of ChatGPT and its privacy-first design, but I’m curious to know: • Are there plans to support third-party LLMs? • Could Siri or Apple Intelligence call external AI agents or allow extensions to plug in alternative models for reasoning, scheduling, or proactive suggestions? I’m particularly interested in building event-driven, voice-triggered workflows where Apple Intelligence could act as a front-end for more complex autonomous systems (possibly local or cloud-based). This kind of extensibility would open up incredible opportunities for personalized, privacy-friendly use cases — while aligning with Apple’s system architecture. Is anything like this on the roadmap? Or is there a suggested way to prototype such integrations today? Thanks in advance for any thoughts or pointers!
4
0
498
May ’25
Training Images for Vision Classifier Model - Swift Student Challenge
I'm working on my Swift Student Challenge submission and developing a Vision framework-based image classifier. I want to ensure I'm following best practices for training data and follow to guidelines for what images I use to train my image classifier. What types of images can I use for training my model? Are there specific image databases or resources recommended by Apple that are safe to use for Swift Student Challenge submissions? Currently considering images used from wikipedia, and my own images
1
0
509
Feb ’25