Hi everyone,
I'm a Mac enthusiast experimenting with tensorflow-metal on my Mac Pro (2013). My question is about GPU selection in tensorflow-metal (v0.8.0), which still supports Intel-based Macs, including my machine.
I've noticed that when running TensorFlow with Metal, it automatically selects a GPU, regardless of what I specify using device indices like "gpu:0", "gpu:1", or "gpu:2". I'm wondering if there's a way to manually specify which GPU should be used via an environment variable or another method.
For reference, I’ve tried the example from TensorFlow’s guide on multi-GPU selection: https://www.tensorflow.org/guide/gpu#using_a_single_gpu_on_a_multi-gpu_system
My goal is to explore performance optimizations by using MirroredStrategy in TensorFlow to leverage multiple GPUs: https://www.tensorflow.org/guide/distributed_training#mirroredstrategy
Interestingly, I discovered that the metalcompute Python library (https://pypi.org/project/metalcompute/) allows to utilize manually selected GPUs on my system, allowing for proper multi-GPU computations. This makes me wonder:
Is there a hidden environment variable or setting that allows manual GPU selection in tensorflow-metal?
Has anyone successfully used MirroredStrategy on multiple GPUs with tensorflow-metal?
Would a bridge between metalcompute and tensorflow-metal be necessary for this use case, or is there a more direct approach?
I’d love to hear if anyone else has experimented with this or has insights on getting finer control over GPU selection. Any thoughts or suggestions would be greatly appreciated!
Thanks!
Explore the power of machine learning and Apple Intelligence within apps. Discuss integrating features, share best practices, and explore the possibilities for your app here.
Selecting any option will automatically load the page
Post
Replies
Boosts
Views
Activity
I have a mac (M4, MacBook Pro) running Tahoe 26.0 beta. I am running Xcode beta.
I can run code that uses the LLM in a #Preview { }.
But when I try to run the same code in the simulator, I get the 'device not ready' error and I see the following in the Settings app.
Is there anything I can do to get the simulator to past this point and allowing me to test on it with Apple's LLM?
I have been using "apple" to test foundation models.
I thought this is local, but today the answer changed - half way through explanation, suddenly guardrailViolation error was activated! And yesterday, all reference to "Apple II", "Apple III" now refers me to consult apple.com!
Does foundation models connect to Internet for answer? Using beta 3.
Topic:
Machine Learning & AI
SubTopic:
Foundation Models
I'm working on a to-do list app that uses SpeechTranscriber and Foundation Models framework to transcribe a user's voice into text and create to-do items based off of it.
After about 30 minutes looking at my code, I couldn't figure out why I was failing to generate a to-do for "I need to go to Six Flags Great America tomorrow at 3pm." It turns out, I was consistently firing the Foundation Models's safety filter violation for unsafe content ("May contain unsafe content").
Lesson learned: consider comprehensively logging Foundation Models error states to quickly identify when safety filters are unexpectedly triggered.
Topic:
Machine Learning & AI
SubTopic:
Foundation Models
Issue type: Bug
TensorFlow metal version: 1.1.1
TensorFlow version: 2.18
OS platform and distribution: MacOS 15.2
Python version: 3.11.11
GPU model and memory: Apple M2 Max GPU 38-cores
Standalone code to reproduce the issue:
import tensorflow as tf
if __name__ == '__main__':
gpus = tf.config.experimental.list_physical_devices('GPU')
print(gpus)
Current behavior
Apple silicone GPU with tensorflow-metal==1.1.0 and python 3.11 works fine with tensorboard==2.17.0
This is normal output:
/Users/mspanchenko/anaconda3/envs/cryptoNN_ml_core/bin/python /Users/mspanchenko/VSCode/cryptoNN/ml/core_second_window/test_tensorflow_gpus.py
[PhysicalDevice(name='/physical_device:GPU:0', device_type='GPU')]
Process finished with exit code 0
But if I upgrade tensorflow to 2.18 I'll have error:
/Users/mspanchenko/anaconda3/envs/cryptoNN_ml_core/bin/python /Users/mspanchenko/VSCode/cryptoNN/ml/core_second_window/test_tensorflow_gpus.py
Traceback (most recent call last):
File "/Users/mspanchenko/VSCode/cryptoNN/ml/core_second_window/test_tensorflow_gpus.py", line 1, in <module>
import tensorflow as tf
File "/Users/mspanchenko/anaconda3/envs/cryptoNN_ml_core/lib/python3.11/site-packages/tensorflow/__init__.py", line 437, in <module>
_ll.load_library(_plugin_dir)
File "/Users/mspanchenko/anaconda3/envs/cryptoNN_ml_core/lib/python3.11/site-packages/tensorflow/python/framework/load_library.py", line 151, in load_library
py_tf.TF_LoadLibrary(lib)
tensorflow.python.framework.errors_impl.NotFoundError: dlopen(/Users/mspanchenko/anaconda3/envs/cryptoNN_ml_core/lib/python3.11/site-packages/tensorflow-plugins/libmetal_plugin.dylib, 0x0006): Symbol not found: __ZN3tsl8internal10LogMessageC1EPKcii
Referenced from: <D2EF42E3-3A7F-39DD-9982-FB6BCDC2853C> /Users/mspanchenko/anaconda3/envs/cryptoNN_ml_core/lib/python3.11/site-packages/tensorflow-plugins/libmetal_plugin.dylib
Expected in: <2814A58E-D752-317B-8040-131217E2F9AA> /Users/mspanchenko/anaconda3/envs/cryptoNN_ml_core/lib/python3.11/site-packages/tensorflow/python/_pywrap_tensorflow_internal.so
Process finished with exit code 1
Apple's Image Playground primarily performs image generation on-device, but can use secure Private Cloud Compute for more complex requests that require larger models. Private Cloud Compute (PCC)
For more complex tasks that require greater computational power than the device can provide, Image Playground leverages Apple's Private Cloud Compute. This system extends the privacy and security of the device to the cloud:
Secure Environment: PCC runs on Apple silicon servers and uses a secure enclave to protect data, ensuring requests are processed in a verified, secure environment.
No Data Storage: Data is never stored or made accessible to Apple when using PCC; it is used only to fulfill the specific request.
Independent Verification: Independent experts are able to inspect the code running on these servers to verify Apple's privacy promises.
Hello,
I'm trying to write a model with PyTorch and convert it to CoreML.
I wrote another models and that works succesfully, even the one that gave the problem is, but I can't visualize it with XCode to know where is running.
The error that appear is:
There was a problem decoding this Core ML document
validator error: unable to open file for read
Anyone knows why is this happening?
Thanks a lot,
Álvaro Corrochano
Topic:
Machine Learning & AI
SubTopic:
Core ML
Hey,
Would be great to have an equivalent of toolCallId for both toolCall and toolResult in the transcript. Otherwise, it is hard to connect tool calls with their respective responses, when there were multiple parallel calls to the same tool.
Thanks!
Topic:
Machine Learning & AI
SubTopic:
Foundation Models
Hello, I'm using videotoolbox superresolution API in MACOS 26: https://developer.apple.com/documentation/videotoolbox/vtsuperresolutionscalerconfiguration/downloadconfigurationmodel(completionhandler:)?language=objc, when using swift, it's ok, when using objective-c, I get error when downloading model with downloadConfigurationModelWithCompletionHandler:
[Auto] MA-auto{_failedLockContent} | failure reported by server | error:[com.apple.MobileAssetError.AutoAsset:MissingReference(6111)]
[Auto] MA-auto{_failedLockContent} | failure reported by server | error:[com.apple.MobileAssetError.AutoAsset:UnderlyingError(6107)_1_com.apple.MobileAssetError.Download:47]
Download completion handler called with error: The operation couldnxe2x80x99t be completed. (VTFrameProcessorErrorDomain error -19743.)
Hello Apple Team,
Thank you for the recent Group Lab and for your continued work on advancing Xcode and developer tools.
I’d like to submit a feature request:
Are there any plans to introduce support for Agentic AI Mode (MCP protocol) in future versions of iOS or Xcode?
As developer tools evolve toward more intelligent and context-aware environments, the integration of agentic AI capabilities could significantly enhance productivity and unlock new creative workflows.
Looking forward to your consideration, and thank you again for the excellent session.
Best regards
Hello,
I have created this basic swift program:
let session = LanguageModelSession(
model: .default,
instructions: "bla bla bla.")
I want to understand what I can put in model parameter (instead of .default).
How can I choose between on-device local model (.default I suppose) and apple private cloud model (or any other ?)
Thanks
My sample app has been working with the following code:
func call(arguments: Arguments) async throws -> ToolOutput {
var temp:Int
switch arguments.city {
case .singapore: temp = Int.random(in: 30..<40)
case .china: temp = Int.random(in: 10..<30)
}
let content = GeneratedContent(temp)
let output = ToolOutput(content)
return output
}
However in 26 beta 5, ToolOutput no longer available, please advice what has changed.
Hi,
I'm trying to use the new RecognizeDocumentsRequest from the Vision Framework to read a receipt. It looks very promising by being able to read paragraphs, lines and detect data. So far it unfortunately seems to read every line on the receipt as a paragraph and when there is more space on one line it creates two paragraphs.
Is there perhaps an Apple Engineer who knows if this is expected behaviour or if I should file a Feedback for this?
Code setup:
let request = RecognizeDocumentsRequest()
let observations = try await request.perform(on: image)
guard let document = observations.first?.document else {
return
}
for paragraph in document.paragraphs {
print(paragraph.transcript)
for data in paragraph.detectedData {
switch data.match.details {
case .phoneNumber(let data):
print("Phone: \(data)")
case .postalAddress(let data):
print("Postal: \(data)")
case .calendarEvent(let data):
print("Calendar: \(data)")
case .moneyAmount(let data):
print("Money: \(data)")
case .measurement(let data):
print("Measurement: \(data)")
default:
continue
}
}
}
See attached image as an example of a receipt I'd like to parse. The top 3 lines are the name, street, and postal code + city. These are all separate paragraphs. Checking on detectedData does see the street (2nd line) as PostalAddress, but not the complete address. Might that be a location thing since it's a Dutch address.
And lower on the receipt it sees the block with "Pomp 1 95 Ongelood" and the things below also as separate paragraphs. First picking up the left side and after that the right side. So it's something like this:
*
Pomp 1
Volume
Prijs
€
TOTAAL
*
BTW
Netto
21.00 %
95 Ongelood
41,90 l
1.949/ 1
81.66
€
14.17
67.49
Hello,
We have been encountering a persistent crash in our application, which is deployed exclusively on iPad devices. The crash occurs in the following code block:
let requestHandler = ImageRequestHandler(paddedImage)
var request = CoreMLRequest(model: model)
request.cropAndScaleAction = .scaleToFit
let results = try await requestHandler.perform(request)
The client using this code is wrapped inside an actor, following Swift concurrency principles.
The issue has been consistently reproduced across multiple iPadOS versions, including:
iPad OS - 18.4.0
iPad OS - 18.4.1
iPad OS - 18.5.0
This is the crash log -
Crashed: com.apple.VN.detectorSyncTasksQueue.VNCoreMLTransformer
0 libobjc.A.dylib 0x7b98 objc_retain + 16
1 libobjc.A.dylib 0x7b98 objc_retain_x0 + 16
2 libobjc.A.dylib 0xbf18 objc_getProperty + 100
3 Vision 0x326300 -[VNCoreMLModel predictWithCVPixelBuffer:options:error:] + 148
4 Vision 0x3273b0 -[VNCoreMLTransformer processRegionOfInterest:croppedPixelBuffer:options:qosClass:warningRecorder:error:progressHandler:] + 748
5 Vision 0x2ccdcc __119-[VNDetector internalProcessUsingQualityOfServiceClass:options:regionOfInterest:warningRecorder:error:progressHandler:]_block_invoke_5 + 132
6 Vision 0x14600 VNExecuteBlock + 80
7 Vision 0x14580 __76+[VNDetector runSuccessReportingBlockSynchronously:detector:qosClass:error:]_block_invoke + 56
8 libdispatch.dylib 0x6c98 _dispatch_block_sync_invoke + 240
9 libdispatch.dylib 0x1b584 _dispatch_client_callout + 16
10 libdispatch.dylib 0x11728 _dispatch_lane_barrier_sync_invoke_and_complete + 56
11 libdispatch.dylib 0x7fac _dispatch_sync_block_with_privdata + 452
12 Vision 0x14110 -[VNControlledCapacityTasksQueue dispatchSyncByPreservingQueueCapacity:] + 60
13 Vision 0x13ffc +[VNDetector runSuccessReportingBlockSynchronously:detector:qosClass:error:] + 324
14 Vision 0x2ccc80 __119-[VNDetector internalProcessUsingQualityOfServiceClass:options:regionOfInterest:warningRecorder:error:progressHandler:]_block_invoke_4 + 336
15 Vision 0x14600 VNExecuteBlock + 80
16 Vision 0x2cc98c __119-[VNDetector internalProcessUsingQualityOfServiceClass:options:regionOfInterest:warningRecorder:error:progressHandler:]_block_invoke_3 + 256
17 libdispatch.dylib 0x1b584 _dispatch_client_callout + 16
18 libdispatch.dylib 0x6ab0 _dispatch_block_invoke_direct + 284
19 Vision 0x2cc454 -[VNDetector internalProcessUsingQualityOfServiceClass:options:regionOfInterest:warningRecorder:error:progressHandler:] + 632
20 Vision 0x2cd14c __111-[VNDetector processUsingQualityOfServiceClass:options:regionOfInterest:warningRecorder:error:progressHandler:]_block_invoke + 124
21 Vision 0x14600 VNExecuteBlock + 80
22 Vision 0x2ccfbc -[VNDetector processUsingQualityOfServiceClass:options:regionOfInterest:warningRecorder:error:progressHandler:] + 340
23 Vision 0x125410 __swift_memcpy112_8 + 4852
24 libswift_Concurrency.dylib 0x5c134 swift::runJobInEstablishedExecutorContext(swift::Job*) + 292
25 libswift_Concurrency.dylib 0x5d5c8 swift_job_runImpl(swift::Job*, swift::SerialExecutorRef) + 156
26 libdispatch.dylib 0x13db0 _dispatch_root_queue_drain + 364
27 libdispatch.dylib 0x1454c _dispatch_worker_thread2 + 156
28 libsystem_pthread.dylib 0x9d0 _pthread_wqthread + 232
29 libsystem_pthread.dylib 0xaac start_wqthread + 8
We found an issue similar to us - https://developer.apple.com/forums/thread/770771.
But the crash logs are quite different, we believe this warrants further investigation to better understand the root cause and potential mitigation strategies.
Please let us know if any additional information would help diagnose this issue.
I'm playing with the new Vision API for iOS18, specifically with the new CalculateImageAestheticsScoresRequest API.
When I try to perform the image observation request I get this error:
internalError("Error Domain=NSOSStatusErrorDomain Code=-1 \"Failed to create espresso context.\" UserInfo={NSLocalizedDescription=Failed to create espresso context.}")
The code is pretty straightforward:
if let image = image {
let request = CalculateImageAestheticsScoresRequest()
Task {
do {
let cgImg = image.cgImage!
let observations = try await request.perform(on: cgImg)
let description = observations.description
let score = observations.overallScore
print(description)
print(score)
} catch {
print(error)
}
}
}
I'm running it on a M2 using the simulator.
Is it a bug? What's wrong?
Hi everyone,
I’m currently using macOS Version 15.3 Beta (24D5034f), and I’m encountering an issue with Apple Intelligence. The image generation tools seem to work fine, but everything else shows a message saying that it’s “not available at this time.”
I’ve tried restarting my Mac and double-checked my settings, but the problem persists. Is anyone else experiencing this issue on the beta version? Are there any fixes or settings I might be overlooking?
Any help or insights would be greatly appreciated!
Thanks in advance!
Hello, I was trying to test out Foundation Model however it says Model assets are unavailable. I got my MacBook M1 back in China when i was living there. is this due to region lock?
I was able to open a new project and play around with the Foundation Model, but when I dropped this class in a production app (with a lot of files) I'm running into Safety Guardrail errors for this very small prompt. Specifically it's "Safety guardrail was triggered after consecutive failures during streaming." Does it have something to do with the size of the app? I don't know what else to try to get it to work?
import FoundationModels
import Playgrounds
@available(iOS 26.0, *)
#Playground {
Task {
do {
let session = LanguageModelSession()
let prompt = "Write a short story about a talking cat."
let response = try await session.respond(to: prompt)
print(response)
} catch {
print("Error: \(error)")
}
}
}
Topic:
Machine Learning & AI
SubTopic:
Foundation Models
I have a series of shortcuts that I’ve written that use the “Use Model” action to do various things. For example, I have a shortcut “Clipboard Markdown to Notes” that takes the content of the clipboard, creates a new note in Notes, converts the markdown content to rich text, adds it to the note etc.
One key step is to analyze the markdown content with “Use Model” and generate a short descriptive title for the note.
I use the on-device model for this, but sometimes the content and prompt exceed the context window size and the action fails with an error message to that effect.
In that case, I’d like to either repeat the action using the Cloud model, or, if the error was a refusal, to prompt the user to enter a title to use.
I‘ve tried using an IF based on whether the response had any text in it, but that didn’t work. No matter what I’ve tried, I can’t seem to find a way to catch the error from Use Model, determine what the error was, and take appropriate action.
Is there a way to do this?
(And by the way, a huge ”thank you” to whoever had the idea of making AppIntents visible in Shortcuts and adding the Use Model action — has made a huge difference already, and it lets us see what Siri will be able to use as well.)
Bear with me, please. Please make sure a highly skilled technical person reads and understands this.
I want to describe my vision for (AI/Algorithmically) Optimised Operating Systems. To explain it properly, I will describe the process to build it (pseudo).
Required Knowledge (no particular order): Processor Logic Circuits, LLM models, LLM tool usage, Python OO coding, Procedural vs OO, NLP fuzzy matching, benchmarking, canvas/artefacts/dynamic HTML interfaces, concepts of how AI models are vastly compressed and miniaturised forms of full data, Algorithmic vs AI.
First, take all OO Python code (example) on GitHub (example), then separate each function from each object into its own procedure (procedural logic) by making a logical procedural list of actions to perform only that function based on its entire dependency chain (i.e. all other objects it relies on). Relate all compiled functions using (for example) fuzzy matching on the name, or AI-based functional profiling to get multiple instances of each function.
Starting with the most used function, test each one against the others that perform the same task for bugs and completeness. Determine the fastest, most optimal version of that function (and every function). Add a single instance of each most optimal function to the centralised tool codebase, which will later be utilised by the language models. This ensures we rely only on the most optimised function for each and every use case — with every program using one shared instance of that function instead of compiling it separately.
In this way, we optimise all existing (Python OO) code based on maximum availability of certain resources. Use the optimised code to teach the AI how to map each user task directly to optimised code (i.e. each user-facing function in unoptimised program code to its optimised version). Later, teach the codebase how to optimise these functions directly to the logic circuits on the processor — as an Operating System — using essentially the same process. Eventually, use the most optimised form for tasks via a dynamic canvas/artefacts UI interface generated by the Start Menu using the language model.
Allow custom interfaces to emerge dynamically from the available functions based on language understanding. Grow and optimise the algorithmic codebase until the entire operating system — with versioning — evolves based on the AI-generated user interfaces (compressing them into new versions of the tools codebase).
Please don’t give up until you understand this concept completely and nothing in the description is beyond your full comprehension. It’s a highly significant step forward.