Explore the power of machine learning and Apple Intelligence within apps. Discuss integrating features, share best practices, and explore the possibilities for your app here.

All subtopics
Posts under Machine Learning & AI topic

Post

Replies

Boosts

Views

Activity

App stuck “In Review” for several days after AI-policy rejection — need clarification
Hello everyone, I’m looking for guidance regarding my app review timeline, as things seem unusually delayed compared to previous submissions. My iOS app was rejected on November 19th due to AI-related policy questions. I immediately responded to the reviewer with detailed explanations covering: Model used (Gemini Flash 2.0 / 2.5 Lite) How the AI only generates neutral, non-directive reflective questions How the system prevents any diagnosis, therapy-like behavior or recommendations Crisis-handling limitations Safety safeguards at generation and UI level Internal red-team testing and results Data retention, privacy, and non-use of data for model training After sending the requested information, I resubmitted the build on November 19th at 14:40. Since then: November 20th (7:30) → Status changed to In Review. November 21st, 22nd, 23rd, 24th, 25th → No movement, still In Review. My open case on App Store Connect is still pending without updates. Because of the previous rejection, I expected a short delay, but this is now 5 days total and 3 business days with no progress, which feels longer than usual for my past submissions. I’m not sure whether: My app is in a secondary review queue due to the AI-related rejection, The reviewer is waiting for internal clarification, Or if something is stuck and needs to be escalated. I don’t want to resubmit a new build unless necessary, since that would restart the queue. Could someone from the community (or Apple, if possible) confirm whether this waiting time is normal after an AI-policy rejection? And is there anything I should do besides waiting — for example, contacting Developer Support again or requesting a follow-up? Thank you very much for your help. I appreciate any insight from others who have experienced similar delays.
0
0
627
3w
Writing tools options
Hi team, We have implemented a writing tool inside a WebView that allows users to type content in a textarea. When the "Show Writing Tools" button is clicked, an AI-powered editor opens. After clicking the "Rewrite" button, the AI modifies the text. However, when clicking the "Replace" button, the rewritten text does not update the original textarea. Kindly check and help me showButton.addTarget(self, action: #selector(showWritingTools(_:)), for: .touchUpInside) @available(iOS 18.2, *) optional func showWritingTools(_ sender: Any) Note: same cases working in TextView pfa
0
0
177
Mar ’25
AttributedString in App Intents
In this WWDC25 session, it is explictely mentioned that apps should support AttributedString for text parameters to their App Intents. However, I have not gotten this to work. Whenever I pass rich text (either generated by the new "Use Model" intent or generated manually for example using "Make Rich Text from Markdown"), my Intent gets an AttributedString with the correct characters, but with all attributes stripped (so in effect just plain text). struct TestIntent: AppIntent { static var title = LocalizedStringResource(stringLiteral: "Test Intent") static var description = IntentDescription("Tests Attributed Strings in Intent Parameters.") @Parameter var text: AttributedString func perform() async throws -> some IntentResult & ReturnsValue<AttributedString> { return .result(value: text) } } Is there anything else I am missing?
0
0
216
Jul ’25
Memory stride warning when loading CoreML models on ANE
When I am doing an uncached load of CoreML model on ANE, I received this warning in Xcode console Type of hiddenStates in function main's I/O contains unknown strides. Using unknown strides for MIL tensor buffers with unknown shapes is not recommended in E5ML. Please use row_alignment_in_bytes property instead. Refer to https://e5-ml.apple.com/more-info/memory-layouts.html for more information. However, the web link does not seem to be working. Where can I find more information about about this and how can I fix it?
1
0
209
Jul ’25
“Unleashing the MacBook Air M2: 673 TFLOPS Achieved with Highly Optimized Metal Shading Language”
Using highly optimized Metal Shading Language (MSL) code, I pushed the MacBook Air M2 to its performance limits with the deformable_attention_universal kernel. The results demonstrate both the efficiency of the code and the exceptional power of Apple Silicon. The total computational workload exceeded 8.455 quadrillion FLOPs, equivalent to processing 8,455 trillion operations. On average, the code sustained a throughput of 85.37 TFLOPS, showcasing the chip’s remarkable ability to handle massive workloads. Peak instantaneous performance reached approximately 673.73 TFLOPS, reflecting near-optimal utilization of the GPU cores. Despite this intensity, the cumulative GPU runtime remained under 100 seconds, highlighting the code’s efficiency and time optimization. The fastest iteration achieved a record processing time of only 0.051 ms, demonstrating minimal bottlenecks and excellent responsiveness. Memory management was equally impressive: peak GPU memory usage never exceeded 2 MB, reflecting efficient use of the M2’s Unified Memory. This minimizes data transfer overhead and ensures smooth performance across repeated workloads. Overall, these results confirm that a well-optimized Metal implementation can unlock the full potential of Apple Silicon, delivering exceptional computational density, processing speed, and memory efficiency. The MacBook Air M2, often considered an energy-efficient consumer laptop, is capable of handling highly intensive workloads at performance levels typically expected from much larger GPUs. This test validates both the robustness of the Metal code and the extraordinary capabilities of the M2 chip for high-performance computing tasks.
0
0
357
Nov ’25
Cmake build unable to 'find' Foundation framework
I'm trying to build llama.cpp, a popular tool for running LLMs locally on macos15.1.1 (24B91) Sonoma using cmake but am encountering errors. Here is the stack overflow post regarding the issue: https://stackoverflow.com/questions/79304015/cmake-unable-to-find-foundation-framework-on-macos-15-1-1-24b91?noredirect=1#comment139853319_79304015
0
0
562
Dec ’24
Various On-Device Frameworks API & ChatGPT
Posting a follow up question after the WWDC 2025 Machine Learning AI & Frameworks Group Lab on June 12. In regards to the on-device API of any of the AI frameworks (foundation model, vision framework, ect.), is there a response condition or path where the API outsources it's input to ChatGPT if the user has allowed this like Siri does? Ignore this if it's a no: is this handled behind the scenes or by the developer?
0
0
251
Jun ’25
[MPSGraph runWithFeeds:targetTensors:targetOperations:] randomly crash
I'm implementing an LLM with Metal Performance Shader Graph, but encountered a very strange behavior, occasionally, the model will report an error message as this: LLVM ERROR: SmallVector unable to grow. Requested capacity (9223372036854775808) is larger than maximum value for size type (4294967295) and crash, the stack backtrace screenshot is attached. Note that 5th frame is mlir::getIntValues<long long> and 6th frame is llvm::SmallVectorBase<unsigned int>::grow_pod It looks like mlir mistakenly took a 64 bit value for a 32 bit type. Unfortunately, I could not found the source code of mlir::getIntValues, maybe it's Apple's closed source fork of llvm for MPS implementation? Anyway, any opinion or suggestion on that?
0
0
183
Mar ’25
Problems creating a PipelineRegressor from a PyTorch converted model
I am trying to create a Pipeline with 3 sub-models: a Feature Vectorizer -> a NN regressor converted from PyTorch -> a Feature Extractor (to convert the output tensor to a Double value). The pipeline works fine when I use just a Vectorizer and an Extractor, this is the code: vectorizer = models.feature_vectorizer.create_feature_vectorizer( input_features=["windSpeed", "theoreticalPowerCurve", "windDirection"], # Multiple input features output_feature_name="input" ) preProc_spec = vectorizer[0] ct.utils.convert_double_to_float_multiarray_type(preProc_spec) extractor = models.array_feature_extractor.create_array_feature_extractor( input_features=[("input",datatypes.Array(3,))], # Multiple input features output_name="output", extract_indices = 1 ) ct.utils.convert_double_to_float_multiarray_type(extractor) pipeline_network = pipeline.PipelineRegressor ( input_features = ["windSpeed", "theoreticalPowerCurve", "windDirection"], output_features=["output"] ) pipeline_network.add_model(preProc_spec) pipeline_network.add_model(extractor) ct.utils.convert_double_to_float_multiarray_type(pipeline_network.spec) ct.utils.save_spec(pipeline_network.spec,"Final.mlpackage") This model works ok. I created a regression NN using PyTorch and converted to Core ML either import torch import torch.nn as nn class TurbinePowerModel(nn.Module): def __init__(self): super().__init__() self.linear1 = nn.Linear(3, 4) self.activation1 = nn.ReLU() #self.linear2 = nn.Linear(5, 4) #self.activation2 = nn.ReLU() self.output = nn.Linear(4, 1) def forward(self, x): #x = F.normalize(x, dim = 0) x = self.linear1(x) x = self.activation1(x) # x = self.linear2(x) # x = self.activation2(x) x = self.output(x) return x def forward_inference(self, windSpeed,theoreticalPowerCurve,windDirection): input_tensor = torch.tensor([windSpeed, theoreticalPowerCurve, windDirection], dtype=torch.float32) return self.forward(input_tensor) model = torch.load('TurbinePowerRegression-1layer.pt', weights_only=False) import coremltools as ct print(ct.__version__) import pandas as pd from sklearn.preprocessing import StandardScaler df = pd.read_csv('T1_clean.csv',delimiter=';') X = df[['WindSpeed','TheoreticalPowerCurve','WindDirection']] y = df[['ActivePower']] scaler = StandardScaler() X = scaler.fit_transform(X) y = scaler.fit_transform(y) X_tensor = torch.tensor(X, dtype=torch.float32) y_tensor = torch.tensor(y, dtype=torch.float32) traced_model = torch.jit.trace(model, X_tensor[0]) mlmodel = ct.convert( traced_model, inputs=[ct.TensorType(name="input", shape=X_tensor[0].shape)], classifier_config=None # Optional, for classification tasks ) mlmodel.save("TurbineBase.mlpackage") This model has a Multiarray(Float 32 3) as input and a Multiarray(Float32 1) as output. When I try to include it in the middle of the pipeline (Adjusting the output and input types of the other models accordingly), the process runs ok, but I have the following error when opening the generated model on Xcode: What's is missing on the models. How can I set or adjust this metadata properly? Thanks!!!
1
0
639
Dec ’24
SpeechTranscriber time indexes - detect pauses?
I'm experimenting with the new SpeechTranscriber in macOS/iOS 26, transcribing speech from a prerecorded mp4 file. Speed and quality are amazing! I've told the transcriber to include time indexes. Each run is always exactly one word, which can be very useful. When I look at the indexes the end of one run is always identical to the start of the next run, even if there's a pause. I'd like to identify pauses, perhaps to generate something like phrases for subtitling. With each run of text going into the next I can't do this, other than using punctuation - which might be rather rough. Any suggestions on detecting pauses, or getting that kind of metadata from the transcriber? Here's a short sample, showing each run with the start, end, and characters in the run: 105.9 --> 107.04 I 107.04 --> 107.16 think 107.16 --> 108.0 more 108.0 --> 108.42 lighting 108.42 --> 108.6 is 108.6 --> 108.72 definitely 108.72 --> 109.2 needed, 109.2 --> 109.92 downtown. 109.98 --> 110.4 My 110.4 --> 110.52 only 110.52 --> 110.7 question 110.7 --> 111.06 is, 111.06 --> 111.48 poll 111.48 --> 111.78 five, 111.78 --> 111.84 that 111.84 --> 112.08 you're 112.08 --> 112.38 increasing 112.38 --> 112.5 the 112.5 --> 113.34 50,000? 113.4 --> 113.58 Where 113.58 --> 113.88 exactly
0
0
171
Jun ’25
Is there anywhere to get precompiled WhisperKit models for Swift?
If try to dynamically load WhipserKit's models, as in below, the download never occurs. No error or anything. And at the same time I can still get to the huggingface.co hosting site without any headaches, so it's not a blocking issue. let config = WhisperKitConfig( model: "openai_whisper-large-v3", modelRepo: "argmaxinc/whisperkit-coreml" ) So I have to default to the tiny model as seen below. I have tried so many ways, using ChatGPT and others, to build the models on my Mac, but too many failures, because I have never dealt with builds like that before. Are there any hosting sites that have the models (small, medium, large) already built where I can download them and just bundle them into my project? Wasted quite a large amount of time trying to get this done. import Foundation import WhisperKit @MainActor class WhisperLoader: ObservableObject { var pipe: WhisperKit? init() { Task { await self.initializeWhisper() } } private func initializeWhisper() async { do { Logging.shared.logLevel = .debug Logging.shared.loggingCallback = { message in print("[WhisperKit] \(message)") } let pipe = try await WhisperKit() // defaults to "tiny" self.pipe = pipe print("initialized. Model state: \(pipe.modelState)") guard let audioURL = Bundle.main.url(forResource: "44pf", withExtension: "wav") else { fatalError("not in bundle") } let result = try await pipe.transcribe(audioPath: audioURL.path) print("result: \(result)") } catch { print("Error: \(error)") } } }
0
0
98
Jun ’25
Vision Framework VNTrackObjectRequest: Minimum Valid Bounding Box Size Causing Internal Error (Code=9)
I'm developing a tennis ball tracking feature using Vision Framework in Swift, specifically utilizing VNDetectedObjectObservation and VNTrackObjectRequest. Occasionally (but not always), I receive the following runtime error: Failed to perform SequenceRequest: Error Domain=com.apple.Vision Code=9 "Internal error: unexpected tracked object bounding box size" UserInfo={NSLocalizedDescription=Internal error: unexpected tracked object bounding box size} From my investigation, I suspect the issue arises when the bounding box from the initial observation (VNDetectedObjectObservation) is too small. However, Apple's documentation doesn't clearly define the minimum bounding box size that's considered valid by VNTrackObjectRequest. Could someone clarify: What is the minimum acceptable bounding box width and height (normalized) that Vision Framework's VNTrackObjectRequest expects? Is there any recommended practice or official guidance for bounding box size validation before creating a tracking request? This information would be extremely helpful to reliably avoid this internal error. Thank you!
0
0
103
Apr ’25
Core ML .mlpackage not found in bundle despite target membership and Copy Bundle Resources
Hi everyone, I’m working on an iOS app that uses a Core ML model to run live image recognition. I’ve run into a persistent issue with the mlpackage not being turned into a swift class. This following error is in the code, and in carDetection.mlpackage, it says that model class has not been generated yet. The error in the code is as follows: What I’ve tried: Verified Target Membership is checked for carDetectionModel.mlpackage Confirmed the file is listed under Copy Bundle Resources (and removed from Compile Sources) Cleaned the build folder (Shift + Cmd + K) and rebuilt Renamed and re-added the .mlpackage file Restarted Xcode and re-added the file Logged bundle contents at runtime, but the .mlpackage still doesn’t appear The mlpackage is in Copy bundle resources, and is not in the compile sources. I just don't know why a swift class is not being generated for the mlpackage. Could someone please give me some guidance on what to do to resolve this issue? Sorry if my error is a bit naive, I'm pretty new to iOS app development
3
0
441
1w
InferenceError with Apple Foundation Model – Context Length Exceeded on macOS 26.0 Beta
Hello Team, I'm currently working on a proof of concept using Apple's Foundation Model for a RAG-based chat system on my MacBook Pro with the M1 Max chip. Environment details: macOS: 26.0 Beta Xcode: 26.0 beta 2 (17A5241o) Target platform: iPad (as the iPhone simulator does not support Foundation models) While testing, even with very small input prompts to the LLM, I intermittently encounter the following error: InferenceError::inference-Failed::Failed to run inference: Context length of 4096 was exceeded during singleExtend. Has anyone else experienced this issue? Are there known limitations or workarounds for context length handling in this setup? Any insights would be appreciated. Thank you!
3
0
275
Jul ’25
Correct JSON format for CoreMotion data for ActivityClassification purposes
I’m developing an activity classifier that I’d like to input using the JSON format of CoreMotion data. I am getting the error: Unable to parse /Users/DewG/Downloads/Testing/Step1/Testing.json. It does not appear to be in JSON record format. A SequenceType of dictionaries is expected I've verified that the format I am using is JSON via various JSON validators, so I am expecting I'm just holding it wrong. Is there an example of a JSON file with CoreMotion data that I can model after?
2
0
119
Jul ’25
Inquiry Regarding Siri–AI Integration Capabilities
: Hello, I’m seeking clarification on whether Apple provides any framework or API that enables deep integration between Siri and advanced AI assistants (such as ChatGPT), including system-level functions like voice interaction, navigation, cross-platform syncing, and operational access similar to Siri’s own capabilities. If no such option exists today, I would appreciate guidance on the recommended path or approved third-party solutions for building a unified, voice-first experience across Apple’s ecosystem. Thank you for your time and insight.
0
0
42
3w
SwiftUI App Intent throws error when using requestDisambiguation with @Parameter property wrapper
I'm implementing an App Intent for my iOS app that helps users plan trip activities. It only works when run as a shortcut but not using voice through Siri. There are 2 issues: The ShortcutsTripEntity will only accept a voice input for a specific trip but not others. I'm stuck with a throwing error when trying to use requestDisambiguation() on the activity day @Parameter property. How do I rectify these issues. This is blocking me from completing a critical feature that lets users quickly plan activities through Siri and Shortcuts. Expected behavior for trip input: The intent should make Siri accept the spoken trip input from any of the options. Actual behavior for trip input: Siri only accepts the same trip when spoken but accepts any when selected by click/touch. Expected behavior for day input: Siri should accept the spoken selected option. Actual behavior for day input: Siri only accepts an input by click/touch but yet throws an error at runtime I'm happy to provide more code. But here's the relevant code: struct PlanActivityTestIntent: AppIntent { @Parameter(title: "Activity Day") var activityDay: ShortcutsItineraryDayEntity @Parameter( title: "Trip", description: "The trip to plan an activity for", default: ShortcutsTripEntity(id: UUID().uuidString, title: "Untitled trip"), requestValueDialog: "Which trip would you like to add an activity to?" ) var tripEntity: ShortcutsTripEntity @Parameter(title: "Activity Title", description: "The title of the activity", requestValueDialog: "What do you want to do or see?") var title: String @Parameter(title: "Activity Day", description: "Activity Day", default: ShortcutsItineraryDayEntity(itineraryDay: .init(itineraryId: UUID(), date: .now), timeZoneIdentifier: "UTC")) var activityDay: ShortcutsItineraryDayEntity func perform() async throws -> some ProvidesDialog { // ...other code... let tripsStore = TripsStore() // load trips and map them to entities try? await tripsStore.getTrips() let tripsAsEntities = tripsStore.trips.map { trip in let id = trip.id ?? UUID() let title = trip.title return ShortcutsTripEntity(id: id.uuidString, title: title, trip: trip) } // Ask user to select a trip. This line would doesn't accept a voice // answer. Why? let selectedTrip = try await $tripEntity.requestDisambiguation( among: tripsAsEntities, dialog: .init( full: "Which of the \(tripsAsEntities.count) trip would you like to add an activity to?", supporting: "Select a trip", systemImageName: "safari.fill" ) ) // This line throws an error let selectedDay = try await $activityDay.requestDisambiguation( among: daysAsEntities, dialog:"Which day would you like to plan an activity for?" ) } } Here are some related images that might help:
0
0
170
Jul ’25