Explore the power of machine learning and Apple Intelligence within apps. Discuss integrating features, share best practices, and explore the possibilities for your app here.

All subtopics
Posts under Machine Learning & AI topic

Post

Replies

Boosts

Views

Activity

Foundation Models Adapter Training Toolkit v0.2.0 LoRA Adapter Incompatible with macOS 26 Beta 4 Base Model
Context I trained a LoRA adapter for Apple’s on-device language model using the Foundation Models Adapter Training Toolkit v0.2.0 on macOS 26 beta 4. Although training completes successfully, loading the resulting .fmadapter package fails with: Adapter is not compatible with the current system base model. What I’ve Observed, Hard-coded Signature: In export/constants.py, the toolkit sets, BASE_SIGNATURE = "9799725ff8e851184037110b422d891ad3b92ec1" Metadata Injection: The export_fmadapter.py script writes this value into the adapter’s metadata: self_dict[MetadataKeys.BASE_SIGNATURE] = BASE_SIGNATURE Compatibility Check: At runtime, the Foundation Models framework compares the adapter’s baseModelSignature against the OS’s system model signature, and reports compatibleAdapterNotFound if they don’t match—without revealing the expected signature. Questions Signature Generation - What exactly does the toolkit hash to derive BASE_SIGNATURE? Is it a straight SHA-1 of base-model.pt, or is there an additional transformation? Recomputing for Beta 4 - Is there a way to locally compute the correct signature for the macOS 26 beta 4 system model? Toolkit Updates - Will Apple release Adapter Training Toolkit v0.3.0 with an updated BASE_SIGNATURE for beta 4, or is there an alternative workaround to generate it myself? Any guidance on how the Foundation Models framework derives and verifies the base model signature—or how to regenerate it for beta 4—would be greatly appreciated.
12
0
607
Aug ’25
tensorflow-metal
Using Tensorflow for Silicon gives inaccurate results when compared to Google Colab GPU (9-15% differences). Here are my install versions for 4 anaconda env's. I understand the Floating point precision can be an issue, batch size, activation functions but how do you rectify this issue for the past 3 years? 1.) Version TF: 2.12.0, Python 3.10.13, tensorflow-deps: 2.9.0, tensorflow-metal: 1.2.0, h5py: 3.6.0, keras: 2.12.0 2.) Version TF: 2.19.0, Python 3.11.0, tensorflow-metal: 1.2.0, h5py: 3.13.0, keras: 3.9.2, jax: 0.6.0, jax-metal: 0.1.1,jaxlib: 0.6.0, ml_dtypes: 0.5.1 3.) python: 3.10.13,tensorflow: 2.19.0,tensorflow-metal: 1.2.0, h5py: 3.13.0, keras: 3.9.2, ml_dtypes: 0.5.1 4.) Version TF: 2.16.2, tensorflow-deps:2.9.0,Python: 3.10.16, tensorflow-macos 2.16.2, tensorflow-metal: 1.2.0, h5py:3.13.0, keras: 3.9.2, ml_dtypes: 0.3.2 Install of Each ENV with common example: Create ENV: conda create --name TF_Env_V2 --no-default-packages start env: source TF_Env_Name ENV_1.) conda install -c apple tensorflow-deps , conda install tensorflow,pip install tensorflow-metal,conda install ipykernel ENV_2.) conda install pip python==3.11, pip install tensorflow,pip install tensorflow-metal,conda install ipykernel ENV_3) conda install pip python 3.10.13,pip install tensorflow, pip install tensorflow-metal,conda install ipykernel ENV_4) conda install -c apple tensorflow-deps, pip install tensorflow-macos, pip install tensor-metal, conda install ipykernel Example used on all 4 env: import tensorflow as tf cifar = tf.keras.datasets.cifar100 (x_train, y_train), (x_test, y_test) = cifar.load_data() model = tf.keras.applications.ResNet50( include_top=True, weights=None, input_shape=(32, 32, 3), classes=100,) loss_fn = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=False) model.compile(optimizer="adam", loss=loss_fn, metrics=["accuracy"]) model.fit(x_train, y_train, epochs=5, batch_size=64)
5
2
1.2k
Oct ’25
Setting Required Capabilities for Foundation Models
Is there any way to ensure iOS apps we develop using Foundation Models can only be purchasable/downloadable on App Store by folks with capable devices? I would've thought there would be a Required Capabilities that App Store would hook into, but I don't seem to see it in the documentation here: https://developer.apple.com/documentation/bundleresources/information-property-list/uirequireddevicecapabilities The closest seems to be iphone-performance-gaming-tier as that seems to target all M1 and above chips on iPhone & iPad. There is an ipad-minimum-performance-m1 that would more reasonably seem to ensure Foundation Models is likely available, but that doesn't help with iPhone. So far, it seems the only path would be to set Minimum Deployment to iOS 26 and add iphone-performance-gaming-tier as a required capability, but I'm a bit worried that capability might diverge in the future from what's Foundation Model / Apple Intelligence capable. While I understand for the majority of apps they'll want to just selectively add in Apple Intelligence features and so can be usable by folks whose devices don't support it, the app experience I'm building doesn't make sense without the Foundation Models being available and I'd rather not have a large number of users downloading the app to be told "Sorry, you're not Apple Intelligence capable"
2
2
249
Aug ’25
Group AppIntents’ Searchable DynamicOptionsProvider in Sections
I’m trying to group my EntityPropertyQuery selection into sections as well as making it searchable. I know that the EntityStringQuery is used to perform the text search via entities(matching string: String). That works well enough and results in this modal: Though, when I’m using a DynamicOptionsProvider to section my EntityPropertyQuery, it doesn’t allow for searching anymore and simply opens the sectioned list in a menu like so: How can I combine both? I’ve seen it in other apps, but can’t figure out why my code doesn’t allow to section the results and make it searchable? Any ideas? My code (simplified) struct MyIntent: AppIntent { @Parameter(title: "Meter"), optionsProvider: MyOptionsProvider()) var meter: MyIntentEntity? // … struct MyOptionsProvider: DynamicOptionsProvider { func results() async throws -> ItemCollection<MyIntentEntity> { // Get All Data let allData = try IntentsDataHandler.shared.getEntities() // Create Arrays for Sections let fooEntities = allData.filter { $0.type == .foo } let barEntities = allData.filter { $0.type == .bar } return ItemCollection(sections: [ ItemSection("Foo", items: fooEntities), ItemSection("Bar", items: barEntities) ]) } } struct MeterIntentQuery: EntityStringQuery { // entities(for identifiers: [UUID]) and suggestedEntities() functions func entities(matching string: String) async throws -> [MyIntentEntity] { // Fetch All Data let allData = try IntentsDataHandler.shared.getEntities() // Filter Data by String let matchingData = allData.filter { data in return data.title.localizedCaseInsensitiveContains(string)) } return matchingData } }
0
2
611
Mar ’25
Guardrail configuration options?
Is anything configurable for LanguageModelSession.Guardrails besides the default? I'm prototyping a camping app, and it's constantly slamming into guardrail errors when I use the new foundation model interface. Any subjects relating to fishing, survival, etc. won't generate. For example the prompt "How can I kill deer ticks using a clothing treatment?" returns a generation error. The results that I get are great when it works, but so far the local model sessions are extremely unreliable.
2
2
241
Jul ’25
Avoid hallucinations and information from trainning data
Hi For certain tasks, such as qualitative analysis or tagging, it is advisable to provide the AI with the option to respond with a joker / wild card answer when it encounters difficulties in tagging or scoring. For instance, you can include this slot in the prompt as follows: output must be "not data to score" when there isn't information to score. In the absence of these types of slots, AI trends to provide a solution even when there is insufficient information. Foundations Models are told to be prompted with simple prompts. I wonder: Is recommended keep this slot though adds verbose complexity? Is the best place the comment of a guided attribute? other tips? Another use case is when you want the AI to be tied to the information provided in the prompt and not take information from its data set. What is the best approach to this purpose? Thanks in advance for any suggestion.
4
0
817
Oct ’25
FoundationModel, context length, and testing
I am working on an app using FoundationModels to process web pages. I am looking to find ways to filter the input to fit within the token limits. I have unit tests, UI tests and the app running on an iPad in the simulator. It appears that the different configurations of the test environment seems to affect the token limits. That is, the same input in a unit test and UI test will hit different token limits. Is this correct? Or is this an artifact of my test tooling?
5
0
1k
Nov ’25
Problem running NLContextualEmbeddingModel in simulator
Environment MacOC 26 Xcode Version 26.0 beta 7 (17A5305k) simulator: iPhone 16 pro iOS: iOS 26 Problem NLContextualEmbedding.load() fails with the following error In simulator Failed to load embedding from MIL representation: filesystem error: in create_directories: Permission denied ["/var/db/com.apple.naturallanguaged/com.apple.e5rt.e5bundlecache"] filesystem error: in create_directories: Permission denied ["/var/db/com.apple.naturallanguaged/com.apple.e5rt.e5bundlecache"] Failed to load embedding model 'mul_Latn' - '5C45D94E-BAB4-4927-94B6-8B5745C46289' assetRequestFailed(Optional(Error Domain=NLNaturalLanguageErrorDomain Code=7 "Embedding model requires compilation" UserInfo={NSLocalizedDescription=Embedding model requires compilation})) in #Playground I'm new to this embedding model. Not sure if it's caused by my code or environment. Code snippet import Foundation import NaturalLanguage import Playgrounds #Playground { // Prefer initializing by script for broader coverage; returns NLContextualEmbedding? guard let embeddingModel = NLContextualEmbedding(script: .latin) else { print("Failed to create NLContextualEmbedding") return } print(embeddingModel.hasAvailableAssets) do { try embeddingModel.load() print("Model loaded") } catch { print("Failed to load model: \(error)") } }
2
2
1.2k
3w
FoundationModels coding
I am writing an app that parses text and conducts some actions. I don't want to give too much away ;) However, I am having a huge problem with token sizes. LanguageModelSession will of course give me the on device model 4096 available, but when you go over 4096, my code doesn't seem to be falling back to PCC, or even the system configured ChatGPT. Can anyone assist me with this? For some reason, after reading the docs, it's very unclear how this transition between the three takes place.
3
0
611
6d
CoreML MLModelErrorModelDecryption error
Somehow I'm not able to decrypt our ml models on my machine. It does not matter: If I clean the build / delete the build folder If it's a local build or a build downloaded from our build server I log in as a different user I reboot my system (15.4.1 (24E263) I use a different network Re-generate the encryption keys. I'm the only one in my team confronted with this issue. Using the encrypted models works fine for everyone else. As soon as our application tries to load the bundled ml model the following error is logged and returned: Could not create persistent key blob for CD49E04F-1A42-4FBE-BFC1-2576B89EC233 : error=Error Domain=com.apple.CoreML Code=9 "Failed to generate key request for CD49E04F-1A42-4FBE-BFC1-2576B89EC233 with error: -42908" Error code 9 points to a decryption issue, but offers no useful pointers and suggests that some sort of network request needs to be made in order to decrypt our models. /*! Core ML throws/returns this error when the framework encounters an error in the model decryption subsystem. The typical cause for this error is in the key server configuration and the client application cannot do much about it. For example, a model loading method will throw/return the error when it uses incorrect model decryption key. */ MLModelErrorModelDecryption API_AVAILABLE(macos(11.0), ios(14.0), watchos(7.0), tvos(14.0)) = 9, I could not find a reference to error '-42908' anywhere. ChatGPT just lied to me, as usual... How do can I resolve this or diagnose this further? Thanks.
3
0
230
May ’25
Full documentation of annotations file for Create ML
The documentation for the Create ML tool ("Building an object detector data source") mentions that there are options for using normalized values instead of pixels and also different anchor point origins ("MLBoundingBoxCoordinatesOrigin") instead of always using "center". However, the JSON format for these does not appear in any examples. Does anyone know the format for these options?
0
1
182
May ’25
Foundation Models unavailable for millions of users due to device language restriction - Need per-app language override
Hi everyone, I'm developing an iOS app using Foundation Models and I've hit a critical limitation that I believe affects many developers and millions of users. The Issue Foundation Models requires the device system language to be one of the supported languages. If a user has their device set to an unsupported language (Catalan, Dutch, Swedish, Polish, Danish, Norwegian, Finnish, Czech, Hungarian, Greek, Romanian, and many others), SystemLanguageModel.isSupported returns false and the framework is completely unavailable. Why This Is Problematic Scenario: A Catalan user has their iPhone in Catalan (native language). They want to use an AI chat app in Spanish or English (languages they speak fluently). Current situation: ❌ Foundation Models: Completely unavailable ✅ OpenAI GPT-4: Works perfectly ✅ Anthropic Claude: Works perfectly ✅ Any cloud-based AI: Works perfectly The user must choose between: Keep device in Catalan → Cannot use Foundation Models at all Change entire device to Spanish → Can use Foundation Models but terrible UX Impact This affects: Millions of users in regions where unsupported languages are official Multilingual users who prefer their device in their native language but can comfortably interact with AI in English/Spanish Developers who cannot deploy Foundation Models-based apps in these markets Privacy-conscious users who are ironically forced to use cloud AI instead of on-device AI What We Need One of these solutions would solve the problem: Option 1: Per-app language override (preferred) // Proposed API let session = try await LanguageModelSession(preferredLanguage: "es-ES") Option 2: Faster rollout of additional languages (particularly EU languages) Option 3: Allow fallback to user-selected supported language when system language is unsupported Technical Details Current behavior: // Device in Catalan let isAvailable = SystemLanguageModel.isSupported // Returns false // No way to override or specify alternative language Why This Matters Apple Intelligence and Foundation Models are amazing for privacy and performance. But this language restriction makes the most privacy-focused AI solution less accessible than cloud alternatives. This seems contrary to Apple's values of accessibility and user choice. Questions for the Community Has anyone else encountered this limitation? Are there any workarounds I'm missing? Has anyone successfully filed feedback about this?(Please share FB number so we can reference it) Are there any sessions or labs where this has been discussed? Thanks for reading. I'd love to hear if others are facing this and how you're handling it.
1
1
390
Nov ’25
SoundAnalysis built-in classifier fails in background (SNErrorCode.operationFailed)
I’m seeing consistent failures using SoundAnalysis live classification when my app moves to the background. Setup iOS 17.x AVAudioEngine mic capture SNAudioStreamAnalyzer SNClassifySoundRequest(classifierIdentifier: .version1) UIBackgroundModes = audio AVAudioSession .record / .playAndRecord, active Audio capture + level metering continue working in background (mic indicator stays on) Issue As soon as the app enters background / screen locks: SoundAnalysis starts failing every second with domain:com.apple.SoundAnalysis, code:2(SNErrorCode.operationFailed) Audio capture itself continues normally When the app returns to foreground, classification immediately resumes without restarting the engine/analyzer Question Is live background sound classification with the built-in SoundAnalysis classifier officially unsupported or known to fail in background? If so, is a custom Core ML model the only supported approach for background detection? Or is there a required configuration I’m missing to keep SNClassifySoundRequest(.version1) running in background? Thanks for any clarification.
0
1
129
Dec ’25
lldb issues with Vision
HI, I've been modifying the Camera sample app found here: https://developer.apple.com/tutorials/sample-apps/capturingphotos-camerapreview ... in the processpreview images, I am calling in to the Vision APis to either detect a person or object, then I'm using the segmentation mask to extract the person and composite them onto a different background with some other filters. I am using coreimage to filter the CIImages, and converting and displaying as a SwiftUI Image. When running on my IPhone, it works fine. When running on my Iphone with the debugger, it crashes within a few seconds... Attached is a screenshot. At the top is an EXC_BAD_ACCESS in libRPAC.dylib`std::__1::__hash_table<std::__1::__hash_value_type<long, qos_info_t>, std::__1::__unordered_map_hasher<long, std::__1::__hash_value_type<long, qos_info_t>, std::__1::hash, std::__1::equal_to, true>, std::__1::__unordered_map_equal<long, std::__1::__hash_value_type<long, qos_info_t>, std::__1::equal_to, std::__1::hash, true>, std::__1::allocator<std::__1::__hash_value_type<long, qos_info_t>>>::__emplace_unique_key_args<long, std::__1::piecewise_construct_t const&, std::__1::tuple<long const&>, std::__1::tuple<>>: This was working fine a couple of days ago.. Not sure why it's popping up now. Am I correct in interpreting this as an LLDB issue? How do I fix it?
3
1
152
May ’25
Regression in EnumeratedShaped support in recent MacOS release
Hi, unfortunately I am not able to verify this but I remember some time ago I was able to create CoreML models that had one (or more) inputs with an enumerated shape size, and one (or more) inputs with a static shape. This was some months ago. Since then I updated my MacOS to Sequoia 15.5, and when I try to execute MLModels with this setup I get the following error libc++abi: terminating due to uncaught exception of type CoreML::MLNeuralNetworkUtilities::AsymmetricalEnumeratedShapesException: A model doesn't allow input features with enumerated flexibility to have unequal number of enumerated shapes, but input feature global_write_indices has 1 enumerated shapes and input feature input_hidden_states has 3 enumerated shapes. It may make sense (but not really though) to verify that for inputs with a flexible enumerated shape they all have the same number of possible shapes is the same, but this should not impede the possibility of also having static shape inputs with a single shape defined alongside the flexible shape inputs.
6
1
245
May ’25
Is there an API for the 3D effect from flat photos?
Introduced in the Keynote was the 3D Lock Screen images with the kangaroo: https://9to5mac.com/wp-content/uploads/sites/6/2025/06/3d-lock-screen-2.gif I can't see any mention on if this effect is available for developers with an API to convert flat 2D photos in to the same 3D feeling image. Does anyone know if there is an API?
1
1
95
Jun ’25
Siri 2.0 (suggests and future updates)
Hey dear developers! This post should be available for the future Siri updates and improvements but also for wishes in this forum so that everyone can share their opinion and idea please stay friendly. have fun! I had already thought about developing a demo app to demonstrate my idea for a better Siri. My change of many: Wish Update: Siri's language recognition capabilities have been significantly enhanced. Instead of manually setting the language, Siri can now automatically recognize the language you intend to use, making language switching much more efficient. Simply speak the language you want to communicate in, and Siri will automatically recognize it and respond accordingly. Whether you speak English, German, or Japanese, Siri will respond in the language you choose.
1
1
859
Oct ’25