Explore the power of machine learning and Apple Intelligence within apps. Discuss integrating features, share best practices, and explore the possibilities for your app here.

All subtopics
Posts under Machine Learning & AI topic

Post

Replies

Boosts

Views

Activity

Difference between compiling a Model using CoreML and Swift-Transformers
Hello, I was successfully able to compile TKDKid1000/TinyLlama-1.1B-Chat-v0.3-CoreML using Core ML, and it's working well. However, I’m now trying to compile the same model using Swift Transformers. With the limited documentation available on the swift-chat and Hugging Face repositories, I’m finding it difficult to understand the correct process for compiling a model via Swift Transformers. I attempted the following approach, but I’m fairly certain it’s not the recommended or correct method. Could someone guide me on the proper way to compile and use models like TinyLlama with Swift Transformers? Any official workflow, example, or best practice would be very helpful. Thanks in advance! This is the approach I have used: import Foundation import CoreML import Tokenizers @main struct HopeApp { static func main() async { print(" Running custom decoder loop...") do { let tokenizer = try await AutoTokenizer.from(pretrained: "PY007/TinyLlama-1.1B-Chat-v0.3") var inputIds = tokenizer("this is the test of the prompt") print("🧠 Prompt token IDs:", inputIds) let model = try float16_model(configuration: .init()) let maxTokens = 30 for _ in 0..<maxTokens { let input = try MLMultiArray(shape: [1, 128], dataType: .int32) let mask = try MLMultiArray(shape: [1, 128], dataType: .int32) for i in 0..<inputIds.count { input[i] = NSNumber(value: inputIds[i]) mask[i] = 1 } for i in inputIds.count..<128 { input[i] = 0 mask[i] = 0 } let output = try model.prediction(input_ids: input, attention_mask: mask) let logits = output.logits // shape: [1, seqLen, vocabSize] let lastIndex = inputIds.count - 1 let lastLogitsStart = lastIndex * 32003 // vocab size = 32003 var nextToken = 0 var maxLogit: Float32 = -Float.greatestFiniteMagnitude for i in 0..<32003 { let logit = logits[lastLogitsStart + i].floatValue if logit > maxLogit { maxLogit = logit nextToken = i } } inputIds.append(nextToken) if nextToken == 32002 { break } let partialText = try await tokenizer.decode(tokens:inputIds) print(partialText) } } catch { print("❌ Error: \(error)") } } }
1
0
163
Jun ’25
Inference Provider crashed with 2:5
I am trying to create a slightly different version of the content tagging code in the documentation: https://developer.apple.com/documentation/foundationmodels/systemlanguagemodel/usecase/contenttagging In the playground I am getting an "Inference Provider crashed with 2:5" error. I have no idea what that means or how to address the error. Any assistance would be appreciated.
1
0
535
Jul ’25
Vision Framework - Testing RecognizeDocumentsRequest
How do I test the new RecognizeDocumentRequest API. Reference: https://www.youtube.com/watch?v=H-GCNsXdKzM I am running Xcode Beta, however I only have one primary device that I cannot install beta software on. Please provide a strategy for testing. Will simulator work? The new capability is critical to my application, just what I need for structuring document scans and extraction. Thank you.
1
0
196
Jun ’25
FoundationModels and Core Data
Hi, I have an app that uses Core Data to store user information and display it in various views. I want to know if it's possible to easily integrate this setup with FoundationModels to make it easier for the user to query and manipulate the information, and if so, how would I go about it? Can the model be pointed to the database schema file and the SQLite file sitting in the user's app group container to parse out the information needed? And/or should the NSManagedObjects be made @Generable for better output? Any guidance about this would be useful.
1
0
199
Jun ’25
Can not use Language Model in Xcode-beta
I've downloaded the Xcode-beta and run the sample project "FoundationModelsTripPlanner" but I got this error when trying generate the response. InferenceError::inferenceFailed::Error Domain=com.apple.UnifiedAssetFramework Code=5000 "There are no underlying assets (neither atomic instance nor asset roots) for consistency token for asset set com.apple.modelcatalog" UserInfo={NSLocalizedFailureReason=There are no underlying assets (neither atomic instance nor asset roots) for consistency token for asset set com.apple.modelcatalog} Device: M1 Pro Question: Is it because M1 not supporting this feature?
1
1
282
Jun ’25
Create ML app seems to stop testing without error
I have a smallish image classifier I've been working on using the Create ML app. For a while everything was going fine, but lately, as the dataset has gotten larger, Create ML seems to stop during the testing phase with no error or test results. You can see here that there is no score in the result box, even though there are testing started and completed messages: No error message is shown in the Create ML app, but I do see these messages in the log: default 14:25:36.529887-0500 MLRecipeExecutionService [0x6000012bc000] activating connection: mach=false listener=false peer=false name=com.apple.coremedia.videodecoder default 14:25:36.529978-0500 MLRecipeExecutionService [0x41c5d34c0] activating connection: mach=false listener=true peer=false name=(anonymous) default 14:25:36.530004-0500 MLRecipeExecutionService [0x41c5d34c0] Channel could not return listener port. default 14:25:36.530364-0500 MLRecipeExecutionService [0x429a88740] activating connection: mach=false listener=false peer=true name=com.apple.xpc.anonymous.0x41c5d34c0.peer[1167].0x429a88740 default 14:25:36.534523-0500 MLRecipeExecutionService [0x6000012bc000] invalidated because the current process cancelled the connection by calling xpc_connection_cancel() default 14:25:36.534537-0500 MLRecipeExecutionService [0x41c5d34c0] invalidated because the current process cancelled the connection by calling xpc_connection_cancel() default 14:25:36.534544-0500 MLRecipeExecutionService [0x429a88740] invalidated because the current process cancelled the connection by calling xpc_connection_cancel() error 14:25:36.558788-0500 MLRecipeExecutionService CreateWithURL:342: *** ERROR: err=24 (Too many open files) - could not open '<CFURL 0x60000079b540 [0x1fdd32240]>{string = file:///Users/kevin/Library/Mobile%20Documents/com~apple~CloudDocs/Binary%20Formations/Under%20My%20Roof/Core%20ML%20Training%20Data/Household%20Items/Output/2025.01.23_12.55.16/Test/Stove/Test480.webp, encoding = 134217984, base = (null)}' default 14:25:36.559030-0500 MLRecipeExecutionService Error: <private> default 14:25:36.559077-0500 MLRecipeExecutionService Error: <private> Of particular interest is the "Too many open files" message from MLRecipeExecutionService referencing one of the test images. There are a total of 2,555 test images, which I wouldn't think would be a very large set. The system doesn't seem to be running out of memory or anything like that. Near the end of the test run there MLRecipeExecution service had 2934 file descriptors open according to lsof. Has anyone else run into this or know of a workaround? So far I've tried rebooting and recreating the Create ML project. Currently using Create ML Version 6.1 (150.3) on macOS 15.2 (24C101) running on a Mac Studio.
1
0
488
Jan ’25
App Shortcuts Limit (10 per app) — Can This Be Increased?
Hi Apple team, When using AppShortcutsProvider, I hit the hard limit: Each app may have at most 10 App Shortcuts. This feels limiting for apps that offer multiple workflows and would benefit from deeper Siri integration. Could this cap be raised — ideally to 30 — to support broader use of AppIntents, enhance Siri automation, and unlock more system-level capabilities? AppShortcuts are a fantastic tool. Increasing the limit would make them even more powerful. Thanks!
1
0
157
Jun ’25
Is there an API for the 3D effect from flat photos?
Introduced in the Keynote was the 3D Lock Screen images with the kangaroo: https://9to5mac.com/wp-content/uploads/sites/6/2025/06/3d-lock-screen-2.gif I can't see any mention on if this effect is available for developers with an API to convert flat 2D photos in to the same 3D feeling image. Does anyone know if there is an API?
1
1
88
Jun ’25
Error when using Image Feature Print v2
Hi all, I'm working on an app to classify dog breeds via CoreML, but when I try training a model using Image Feature Print v2, I get the following error: Failed to create CVPixelBufferPool. Width = 0, Height = 0, Format = 0x00000000 Strangely, when I switch back to Image Feature Print v1, the model trains perfectly fine. I've verified that there aren't any invalid or broken images in my dataset. Is there a fix for this? Thanks!
1
1
479
Jan ’25
Xcode Beta 1 and FoundationsModel access
I downloaded Xcode Beta 1 on my mac (did not upgrade the OS). The target OS level of iOS26 and the device simulator for iOS26 is downloaded and selected as the target. When I try a simple Playground in Xcode ( #Playground ) I get a session error. #Playground { let avail = SystemLanguageModel.default.availability if avail != .available { print("SystemLanguageModel not available") return } let session = LanguageModelSession() do { let response = try await session.respond(to: "Create a recipe for apple pie") } catch { print(error) } } The error I get is: Asset com.apple.gm.safety_deny_input.foundation_models.framework.api not found in Model Catalog Is there a way to test drive the FoundationModel code without upgrading to macos26?
1
1
348
Jun ’25
AI-Powered Feed Customization via User-Defined Algorithm
Hey guys 👋 I’ve been thinking about a feature idea for iOS that could totally change the way we interact with apps like Twitter/X. Imagine if we could define our own recommendation algorithm, and have an AI on the iPhone that replaces the suggested tweets in the feed with ones that match our personal interests — based on public tweets, and without hacking anything. Kinda like a personalized "AI skin" over the app that curates content you actually care about. Feels like this would make content way more relevant and less algorithmically manipulative. Would love to know what you all think — and if Apple could pull this off 🔥
1
0
71
Jun ’25
About VisionKit DataScannerViewController
Hi I'm having a problem with DataScannerViewController, I'm using the volume barcode scanning feature in my app, prior to that I was using an AVCaptureDevice with the UltraWideAngle set. After discovering DataScannerViewController, we planned to replace the previous obsolete code with DataScannerViewController, all together it was ok, when I want to set the ultra wide angle, I don't know how to start. I tried to get the minZoomFactor and I realized that I get 0.0 I tried to set zoomFactor to 1.0 and I found that he is not valid Note: func dataScannerDidZoom(_ dataScanner: DataScannerViewController), when I try to get the minZoomFactor, set the zoomFactor in this proxy method, I find that it is valid! What should I do next, I want to use only DataScannerViewController and implement ultra wide angle Thanks a lot.
1
0
636
Jan ’25
CoreML: Model loading utilities
Hello, We find that models sometimes load very fast (<< 1 second) and sometimes encounter very long load times (>> 120 seconds). During such slow load times, the model is being compiled. We would greatly appreciate the ability to check cache validity via CoreML and determine that we are about to encounter long load times so that we can mitigate and provide a good user experience. A secondary issue: sometimes the cache is corrupted (typically .mpsgraphpackage yielding Metal cold asserts). This yields load failures and OS errors that persist between launches, and we have to manually nuke the cache (~/Library/..../my-app/...) for the CoreML assets. A CoreML API for clearing caches and hardening from asserts across the load paths would be appreciated
1
0
118
Jun ’25