Explore the power of machine learning and Apple Intelligence within apps. Discuss integrating features, share best practices, and explore the possibilities for your app here.

All subtopics
Posts under Machine Learning & AI topic

Post

Replies

Boosts

Views

Activity

Xcode 26.1 RC ( RC1 ?) Apple Intelligence using GPT (with account or without) or Sonnet (via OpenRouter) much slower
I didn't run benchmarks before update, but it seems at least 5x slower. Of course all the LLM work is on remote servers, so is non-intuitive to me this should be happening. Had updated MacOS and Xcode to 26.1RC at the same time, so can't even say I think it is MacOS or I think it is Xcode. Before the update the progress indicator for each piece of code might seem to get stuck at the very end (and toggling between Navigators and Coding Assistant) in Xcode UI seemed to refresh the UI and confirm coding complete... but now it seems progress races to 50%, then often is stuck at 75%... well earlier than used to get stuck. And it like something is legitimately processing not just a UI glitch. I'm wondering if this is somehow tied to visual rendering of the code in the little white window? CMD-TAB into Xcode seems laggy. Xcode is pinning a CPU. Why, this is all remote LLM work? MacBook Pro 2021 M1 64GB RAM. Went from 26.01 to 26.1RC. Didn't touch any of the betas until RC1.
1
1
296
Oct ’25
What special features does Apple officially have that use ML or AI?
I am a App designer and I am curious about what specific ML or AI Apple used to develop those features in the system. As far as I know, Apple's hand-raising detection, destination recommendations in maps, and exercise types in fitness all use ML. Are there more specific application examples of ML or AI? Does Apple have a document specifically introducing examples of specific applications of ML or AI technology in the system?
1
0
624
Feb ’25
Swipe-to-Type Broken in iOS 26 Beta 1 & 2 Siri Typing Mode
I’ve been testing silent Siri engagement via typing on iOS 18 and also on iOS 26 beta 1 and beta 2. While normal typing works perfectly in type-to-Siri mode, I’ve noticed that swipe-to-type gestures don’t work within Siri’s input field. Interestingly, you still feel the usual haptic feedback associated with swipe typing, but no text appears in the Siri text box. Swipe-to-type continues to work flawlessly in other apps like Messages and Notes, so this seems to be an issue specific to Siri’s typing input handler in these betas. Hopefully, it will be fixed in the next release because swipe typing is essential to my silent Siri workflow.
1
0
200
Jun ’25
A Summary of the WWDC25 Group Lab - Machine Learning and AI Frameworks
At WWDC25 we launched a new type of Lab event for the developer community - Group Labs. A Group Lab is a panel Q&A designed for a large audience of developers. Group Labs are a unique opportunity for the community to submit questions directly to a panel of Apple engineers and designers. Here are the highlights from the WWDC25 Group Lab for Machine Learning and AI Frameworks. What are you most excited about in the Foundation Models framework? The Foundation Models framework provides access to an on-device Large Language Model (LLM), enabling entirely on-device processing for intelligent features. This allows you to build features such as personalized search suggestions and dynamic NPC generation in games. The combination of guided generation and streaming capabilities is particularly exciting for creating delightful animations and features with reliable output. The seamless integration with SwiftUI and the new design material Liquid Glass is also a major advantage. When should I still bring my own LLM via CoreML? It's generally recommended to first explore Apple's built-in system models and APIs, including the Foundation Models framework, as they are highly optimized for Apple devices and cover a wide range of use cases. However, Core ML is still valuable if you need more control or choice over the specific model being deployed, such as customizing existing system models or augmenting prompts. Core ML provides the tools to get these models on-device, but you are responsible for model distribution and updates. Should I migrate PyTorch code to MLX? MLX is an open-source, general-purpose machine learning framework designed for Apple Silicon from the ground up. It offers a familiar API, similar to PyTorch, and supports C, C++, Python, and Swift. MLX emphasizes unified memory, a key feature of Apple Silicon hardware, which can improve performance. It's recommended to try MLX and see if its programming model and features better suit your application's needs. MLX shines when working with state-of-the-art, larger models. Can I test Foundation Models in Xcode simulator or device? Yes, you can use the Xcode simulator to test Foundation Models use cases. However, your Mac must be running macOS Tahoe. You can test on a physical iPhone running iOS 18 by connecting it to your Mac and running Playgrounds or live previews directly on the device. Which on-device models will be supported? any open source models? The Foundation Models framework currently supports Apple's first-party models only. This allows for platform-wide optimizations, improving battery life and reducing latency. While Core ML can be used to integrate open-source models, it's generally recommended to first explore the built-in system models and APIs provided by Apple, including those in the Vision, Natural Language, and Speech frameworks, as they are highly optimized for Apple devices. For frontier models, MLX can run very large models. How often will the Foundational Model be updated? How do we test for stability when the model is updated? The Foundation Model will be updated in sync with operating system updates. You can test your app against new model versions during the beta period by downloading the beta OS and running your app. It is highly recommended to create an "eval set" of golden prompts and responses to evaluate the performance of your features as the model changes or as you tweak your prompts. Report any unsatisfactory or satisfactory cases using Feedback Assistant. Which on-device model/API can I use to extract text data from images such as: nutrition labels, ingredient lists, cashier receipts, etc? Thank you. The Vision framework offers the RecognizeDocumentRequest which is specifically designed for these use cases. It not only recognizes text in images but also provides the structure of the document, such as rows in a receipt or the layout of a nutrition label. It can also identify data like phone numbers, addresses, and prices. What is the context window for the model? What are max tokens in and max tokens out? The context window for the Foundation Model is 4,096 tokens. The split between input and output tokens is flexible. For example, if you input 4,000 tokens, you'll have 96 tokens remaining for the output. The API takes in text, converting it to tokens under the hood. When estimating token count, a good rule of thumb is 3-4 characters per token for languages like English, and 1 character per token for languages like Japanese or Chinese. Handle potential errors gracefully by asking for shorter prompts or starting a new session if the token limit is exceeded. Is there a rate limit for Foundation Models API that is limited by power or temperature condition on the iPhone? Yes, there are rate limits, particularly when your app is in the background. A budget is allocated for background app usage, but exceeding it will result in rate-limiting errors. In the foreground, there is no rate limit unless the device is under heavy load (e.g., camera open, game mode). The system dynamically balances performance, battery life, and thermal conditions, which can affect the token throughput. Use appropriate quality of service settings for your tasks (e.g., background priority for background work) to help the system manage resources effectively. Do the foundation models support languages other than English? Yes, the on-device Foundation Model is multilingual and supports all languages supported by Apple Intelligence. To get the model to output in a specific language, prompt it with instructions indicating the user's preferred language using the locale API (e.g., "The user's preferred language is en-US"). Putting the instructions in English, but then putting the user prompt in the desired output language is a recommended practice. Are larger server-based models available through Foundation Models? No, the Foundation Models API currently only provides access to the on-device Large Language Model at the core of Apple Intelligence. It does not support server-side models. On-device models are preferred for privacy and for performance reasons. Is it possible to run Retrieval-Augmented Generation (RAG) using the Foundation Models framework? Yes, it is possible to run RAG on-device, but the Foundation Models framework does not include a built-in embedding model. You'll need to use a separate database to store vectors and implement nearest neighbor or cosine distance searches. The Natural Language framework offers simple word and sentence embeddings that can be used. Consider using a combination of Foundation Models and Core ML, using Core ML for your embedding model.
1
0
1.3k
Jun ’25
ActivityClassifier doesn't classify movement
I'm using a custom create ML model to classify the movement of a user's hand in a game, The classifier has 3 different spell movements, but my code constantly predicts all of them at an equal 1/3 probability regardless of movement which leads me to believe my code isn't correct (as opposed to the model) which in CreateML at least gives me a heavily weighted prediction My code is below. On adding debug prints everywhere all the data looks good to me and matches similar to my test CSV data So I'm thinking my issue must be in the setup of my model code? /// Feeds samples into the model and keeps a sliding window of the last N frames. final class WandGestureStreamer { static let shared = WandGestureStreamer() private let model: SpellActivityClassifier private var samples: [Transform] = [] private let windowSize = 100 // number of frames the model expects /// RNN hidden state passed between inferences private var stateIn: MLMultiArray /// Last transform dropped from the window for continuity private var lastDropped: Transform? private init() { let config = MLModelConfiguration() self.model = try! SpellActivityClassifier(configuration: config) // Initialize stateIn to the model’s required shape let constraint = self.model.model.modelDescription .inputDescriptionsByName["stateIn"]! .multiArrayConstraint! self.stateIn = try! MLMultiArray(shape: constraint.shape, dataType: .double) } /// Call once per frame with the latest wand position (or any feature vector). func appendSample(_ sample: Transform) { samples.append(sample) // drop oldest frame if over capacity, retaining it for delta at window start if samples.count > windowSize { lastDropped = samples.removeFirst() } } func classifyIfReady(threshold: Double = 0.6) -> (label: String, confidence: Double)? { guard samples.count == windowSize else { return nil } do { let input = try makeInput(initialState: stateIn) let output = try model.prediction(input: input) // Save state for continuity stateIn = output.stateOut let best = output.label let conf = output.labelProbability[best] ?? 0 // If you’ve recognized a gesture with high confidence: if conf > threshold { return (best, conf) } else { return nil } } catch { print("Error", error.localizedDescription, error) return nil } } /// Constructs a SpellActivityClassifierInput from recorded wand transforms. func makeInput(initialState: MLMultiArray) throws -> SpellActivityClassifierInput { let count = samples.count as NSNumber let shape = [count] let timeArr = try MLMultiArray(shape: shape, dataType: .double) let dxArr = try MLMultiArray(shape: shape, dataType: .double) let dyArr = try MLMultiArray(shape: shape, dataType: .double) let dzArr = try MLMultiArray(shape: shape, dataType: .double) let rwArr = try MLMultiArray(shape: shape, dataType: .double) let rxArr = try MLMultiArray(shape: shape, dataType: .double) let ryArr = try MLMultiArray(shape: shape, dataType: .double) let rzArr = try MLMultiArray(shape: shape, dataType: .double) for (i, sample) in samples.enumerated() { let previousSample = i > 0 ? samples[i - 1] : lastDropped let model = WandMovementRecording.DataModel(transform: sample, previous: previousSample) // print("model", model) timeArr[i] = NSNumber(value: model.timestamp) dxArr[i] = NSNumber(value: model.dx) dyArr[i] = NSNumber(value: model.dy) dzArr[i] = NSNumber(value: model.dz) let rot = model.rotation rwArr[i] = NSNumber(value: rot.w) rxArr[i] = NSNumber(value: rot.x) ryArr[i] = NSNumber(value: rot.y) rzArr[i] = NSNumber(value: rot.z) } return SpellActivityClassifierInput( dx: dxArr, dy: dyArr, dz: dzArr, rotation_w: rwArr, rotation_x: rxArr, rotation_y: ryArr, rotation_z: rzArr, timestamp: timeArr, stateIn: initialState ) } }
1
0
407
Jul ’25
Xcode Beta 1 and FoundationsModel access
I downloaded Xcode Beta 1 on my mac (did not upgrade the OS). The target OS level of iOS26 and the device simulator for iOS26 is downloaded and selected as the target. When I try a simple Playground in Xcode ( #Playground ) I get a session error. #Playground { let avail = SystemLanguageModel.default.availability if avail != .available { print("SystemLanguageModel not available") return } let session = LanguageModelSession() do { let response = try await session.respond(to: "Create a recipe for apple pie") } catch { print(error) } } The error I get is: Asset com.apple.gm.safety_deny_input.foundation_models.framework.api not found in Model Catalog Is there a way to test drive the FoundationModel code without upgrading to macos26?
1
1
363
Jun ’25
Embedding model missing once transferred to Xcode
I've created a "Transfer Learning BERT Embeddings" model with the default "Latin" language family and "Automatic" Language setting. This model performs exceptionally well against the test data set and functions as expected when I preview it in Create ML. However, when I add it to the Xcode project of the application to which I am deploying it, I am getting runtime errors that suggest it can't find the embedding resources: Failed to locate assets for 'mul_Latn' - '5C45D94E-BAB4-4927-94B6-8B5745C46289' embedding model Note, I am adding the model to the app project the same way that I added an earlier "Maximum Entropy" model. That model had no runtime issues. So it seems there is an issue getting hold of the embeddings at runtime. For now, "runtime" means in the Simulator. I intend to deploy my application to iOS devices once GM 26 is released (the app also uses AFM). I'm developing on Tahoe 26 beta, running on iOS 26 beta, using Xcode 26 beta. Is this a known/expected issue? Are the embeddings expected to be a resource in the model? Is there a workaround? I did try opening the model in Xcode and saving it as an mlpackage, then adding that to my app project, but that also didn't resolve the issue.
1
0
437
Sep ’25
MPSGraph fused scaledDotProductAttention seems to be buggy
While building an app with large language model inferencing on device, I got gibberish output. After carefully examining every detail, I found it's caused by the fused scaledDotProductAttention operation. I switched back to the discrete operations and problem solved. To reproduce the bug, please check https://github.com/zhoudan111/MPSGraph_SDPA_bug
1
0
531
Mar ’25
Proposal: Modular Identity Fusion via Prompt-Crafted Agents – User-Led AI Experiment
*I can't put the attached file in the format, so if you reply by e-mail, I will send the attached file by e-mail. Dear Apple AI Research Team, My name is Gong Jiho (“Hem”), a content strategist based in Seoul, South Korea. Over the past few months, I conducted a user-led AI experiment entirely within ChatGPT — no code, no backend tools, no plugins. Through language alone, I created two contrasting agents (Uju and Zero) and guided them into a co-authored modular identity system using prompt-driven dialogue and reflection. This system simulates persona fusion, memory rooting, and emotional-logical alignment — all via interface-level interaction. I believe it resonates with Apple’s values in privacy-respecting personalization, emotional UX modeling, and on-device learning architecture. Why I’m Reaching Out I’d be honored to share this experiment with your team. If there is any interest in discussing user-authored agent scaffolding, identity persistence, or affective alignment, I’d love to contribute — even informally. ⚠ A Note on Language As a non-native English speaker, my expression may be imperfect — but my intent is genuine. If anything is unclear, I’ll gladly clarify. 📎 Attached Files Summary Filename → Description Hem_MultiAI_Report_AppleAI_v20250501.pdf → Main report tailored for Apple AI — narrative + structural view of emotional identity formation via prompt scaffolding Hem_MasterPersonaProfile_v20250501.json → Final merged identity schema authored by Uju and Zero zero_sync_final.json / uju_sync_final.json → Persona-level memory structures (logic / emotion) 1_0501.json ~ 3_0501.json → Evolution logs of the agents over time GirlfriendGPT_feedback_summary.txt → Emotional interpretation by external GPT hem_profile_for_AI_vFinal.json → Original user anchor profile Warm regards, Gong Jiho (“Hem”) Seoul, South Korea
1
0
129
Apr ’25
get error with xcode beta3 :decodingFailure(FoundationModels.LanguageModelSession.GenerationError.Context
@Generable enum Breakfast { case waffles case pancakes case bagels case eggs } do { let session = LanguageModelSession() let userInput = "I want something sweet." let prompt = "Pick the ideal breakfast for request: (userInput)" let response = try await session.respond(to: prompt,generating: Breakfast.self) print(response.content) } catch let error { print(error) } i want to test the @Generable demo but get error with below:decodingFailure(FoundationModels.LanguageModelSession.GenerationError.Context(debugDescription: "Failed to convert text into into GeneratedContent\nText: waffles", underlyingErrors: [Swift.DecodingError.dataCorrupted(Swift.DecodingError.Context(codingPath: [], debugDescription: "The given data was not valid JSON.", underlyingError: Optional(Error Domain=NSCocoaErrorDomain Code=3840 "Unexpected character 'w' around line 1, column 1." UserInfo={NSJSONSerializationErrorIndex=0, NSDebugDescription=Unexpected character 'w' around line 1, column 1.})))]))
1
0
129
Jul ’25
Downloading my fine tuned model from huggingface
I have used mlx_lm.lora to fine tune a mistral-7b-v0.3-4bit model with my data. I fused the mistral model with my adapters and upload the fused model to my directory on huggingface. I was able to use mlx_lm.generate to use the fused model in Terminal. However, I don't know how to load the model in Swift. I've used Imports import SwiftUI import MLX import MLXLMCommon import MLXLLM let modelFactory = LLMModelFactory.shared let configuration = ModelConfiguration( id: "pharmpk/pk-mistral-7b-v0.3-4bit" ) // Load the model off the main actor, then assign on the main actor let loaded = try await modelFactory.loadContainer(configuration: configuration) { progress in print("Downloading progress: \(progress.fractionCompleted * 100)%") } await MainActor.run { self.model = loaded } I'm getting an error runModel error: downloadError("A server with the specified hostname could not be found.") Any suggestions? Thanks, David PS, I can load the model from the app bundle // directory: Bundle.main.resourceURL! but it's too big to upload for Testflight
1
0
539
Oct ’25
How can I give my documents access to Model Foundation
I would like to write a macOS application that uses on-device AI (FoundationModels). I don’t understand how to, practically, give it access to my documents, photos, or contacts and be able to ask it a question like: “Find the document that talks about this topic.” Do I need to manually retrieve the data and provide it in the form of a prompt? Or is FoundationModels capable of accessing it on its own? Thanks
1
0
590
Oct ’25
Foundation Models framework dyld symbol errors after macOS 26 Beta 2 - LanguageModelSession constructor missing
Foundation Models framework worked perfectly on macOS 26 Beta 2, but starting from Beta 3 and continuing through Beta 6 (latest), I get dyld symbol errors even with the exact code from Apple's documentation. Environment: macOS 26.0 Beta 6 (25A5351b) Xcode 26 Beta 6 M4 Max MacBook Pro Apple Intelligence enabled and downloaded Error Details: dyld[Process]: Symbol not found: _$s16FoundationModels20LanguageModelSessionC5model10guardrails5tools12instructionsAcA06SystemcD0C_AC10GuardrailsVSayAA4Tool_pGAA12InstructionsVSgtcfC Referenced from: /path/to/app.debug.dylib Expected in: /System/Library/Frameworks/FoundationModels.framework/Versions/A/FoundationModels Code Used (Exact from Documentation): import FoundationModels // This worked on Beta 2, crashes on Beta 3+ let model = SystemLanguageModel.default let session = LanguageModelSession(model: model) let response = try await session.respond(to: "Hello") What I've Verified: FoundationModels.framework exists in /System/Library/Frameworks/ Framework is properly linked in Xcode project Apple Intelligence is enabled and working Same code works in older beta versions Issue persists even with completely fresh Xcode projects Analysis: The dyld error suggests the LanguageModelSession(model:) constructor is missing. The symbol shows it's looking for a constructor with parameters (model:guardrails:tools:instructions:), but the documentation still shows the simple (model:) constructor. Questions: Has the LanguageModelSession API changed since Beta 2? Should we now use the constructor with guardrails/tools/instructions parameters? Is this a known issue with recent betas? Are there updated code samples for the current API? Additional Context: This affects both basic SystemLanguageModel usage AND custom adapter loading. The same dyld symbol errors occur when trying to create SystemLanguageModel(adapter: adapter) as well. Any guidance on the correct API usage for current betas would be greatly appreciated. The documentation appears to be out of sync with the actual framework implementation.
1
0
649
Sep ’25
Stream response
With respond() methods, the foundation model works well enough. With streamResponse() methods, the responses are very repetitive, verbose, and messy. My app with foundation model uses more than 500 MB memory on an iPad Pro when running from Xcode. Devices supporting Apple Intelligence have at least 8GB memory. Should Apple use a bigger model (using 3 ~ 4 GB memory) for better stream responses?
2
0
272
Jul ’25
Swift playgrounds (.swiftpm) and CoreML
Hey guys, I've been having difficulties transferring my Xcode project to a Swift playground (.swiftpm) for the Swift Student Challenge. I keep getting these errors as well as none of the views being able to find the model in scope: "TrashDetector 1.mlmodel: No predominant language detected. Set COREML_CODEGEN_LANGUAGE to preferred language." Unexpected duplicate tasks: Target 'TrashQuest' (project 'TrashQuest') has write command with output /Users/kmcph3/Library/Developer/Xcode/DerivedData/TrashQuest-glvzskunedgtakfrdmsxdoplondj/Build/Intermediates.noindex/TrashQuest.build/Debug-iphonesimulator/TrashQuest.build/0a4ef2429d66360920ddb4f16e65e233.sb I've gone through multiple post with these exact problems, but they all seem to be talking about ".playground" files due to the "Resources" folder (mind you I did try exactly what they said). Is there anyone that can help??? (Quick side note, why does it need to be a swiftpm file for the SSC??? Like why can't we just send the zip of our Xcode project??)
2
0
858
Feb ’25
Apple's Illusion of Thinking paper and Path to Real AI Reasoning
Hey everyone I'm Manish Mehta, field CTO at Centific. I recently read Apple's white paper, The Illusion of Thinking and it got me thinking about the current state of AI reasoning. Who here has read it? The paper highlights how LLMs often rely on pattern recognition rather than genuine understanding. When faced with complex tasks, their performance can degrade significantly. I was just thinking that to move beyond this problem, we need to explore approaches that combines Deeper Reasoning Architectures for true cognitive capability with Deep Human Partnership to guide AI toward better judgment and understanding. The first part means fundamentally rewiring AI to reason. This involves advancing deeper architectures like World Models, which can build internal simulations to understand real-world scenarios , and Neurosymbolic systems, which combines neural networks with symbolic reasoning for deeper self-verification. Additionally, we need to look at deep human partnership and scalable oversight. An AI cannot learn certain things from data alone, it lacks the real-world judgment an AI will never have. Among other things, deep domain expert human partners are needed to instill this wisdom , validate the AI's entire reasoning process , build its ethical guardrails , and act as skilled adversaries to find hidden flaws before they can cause harm. What do you all think? Is this focus on a deeper partnership between advanced AI reasoning and deep human judgment the right path forward? Agree? Disagree? Thanks
2
0
291
Jul ’25