Processes & Concurrency

RSS for tag

Discover how the operating system manages multiple applications and processes simultaneously, ensuring smooth multitasking performance.

Concurrency Documentation

Posts under Processes & Concurrency subtopic

Post

Replies

Boosts

Views

Activity

BGContinuedProcessingTask expiring unpredictably
I've adopted the new BGContinuedProcessingTask in iOS 26, and it has mostly been working well in internal testing. However, in production I'm getting reports of the tasks failing when the app is put into the background. A bit of info on what I'm doing: I need to download a large amount of data (around 250 files) and process these files as they come down. The size of the files can vary: for some tasks each file might be around 10MB. For other tasks, the files might be 40MB. The processing is relatively lightweight, but the volume of data means the task can potentially take over an hour on slower internet connections (up to 10GB of data). I set the totalUnitCount based on the number of files to be downloaded, and I increment completedUnitCount each time a file is completed. After some experimentation, I've found that smaller tasks (e.g. 3GB, 10MB per file) seem to be okay, but larger tasks (e.g. 10GB, 40MB per file) seem to fail, usually just a few seconds after the task is backgrounded (and without even opening any other apps). I think I've even observed a case where the task expired while the app was foregrounded! I'm trying to understand what the rules are with BGContinuedProcessingTask and I can see at least four possibilities that might be relevant: Is it necessary to provide progress updates at some minimum rate? For my larger tasks, where each file is ~40MB, there might be 20 or 30 seconds between progress updates. Does this make it more likely that the task will be expired? For larger tasks, the total time to complete can be 60–90 mins on slower internet connections. Is there some maximum amount of time the task can run for? Does the system attempt some kind of estimate of the overall time to complete and expire the task on that basis? The processing on each file is relatively lightweight, so most of the time the async stream is awaiting the next file to come down. Does the OS monitor the intensity of workload and suspend the task if it appears to be idle? I've noticed that the task UI sometimes displays a message, something along the lines of "Do you want to continue this task?" with a "Continue" and "Stop" option. What happens if the user simply ignores or doesn't see this message? Even if I tap "Continue" the task still seems to fail sometimes. I've read the docs and watched the WWDC video, but there's not a whole lot of information on the specific issues I mention above. It would be great to get some clarity on this, and I'd also appreciate any advice on alternative ways I could approach my specific use case.
7
0
284
1w
Prevent my app from background activity
When I search, it's always people trying to do stuff in the background. I want my app to only do stuff when it is active. And this post https://developer.apple.com/forums/thread/685525 seems to have prevented replies from the start. Which means it's just a documentation page and does not belong in the discussion forums at all, because it prevents all discussion.
1
0
88
May ’25
How to Handle Asynchronous Operations in BGContinuedProcessingTask
I would like to know whether BGContinuedProcessingTaskRequest supports executing asynchronous tasks internally, or if it can only execute synchronous tasks within BGContinuedProcessingTaskRequest? Our project is very complex, and we now need to use BGContinuedProcessingTaskRequest to perform some long-running operations when the app enters the background (such as video encoding/decoding & export). However, our export interface is an asynchronous function, for example video.export(callback: FinishCallback). This export call returns immediately, and when the export completes internally, it calls back through the passed-in callback. So when I call BGTaskScheduler.shared.register to register a BGContinuedProcessingTask, what should be the correct approach? Should I directly call video.export(nil) without any waiting, or should I wait for the export function to complete in the callback? For example: BGTaskScheduler.shared.register(forTaskWithIdentifier: "com.xxx.xxx.xxx.xxx", using: nil) { task in guard let continuedTask = task as? BGContinuedProcessingTask else { task.setTaskCompleted(success: false) return } let scanner = SmartAssetsManager.shared let semaphore = DispatchSemaphore(value: 0) continuedTask.expirationHandler = { logError(items: "xwxdebug finished.") semaphore.signal() } logInfo(items: "xwxdebug start!") video.export { _ in semaphore.signal() } semaphore.wait() logError(items: "xwxdebug finished!") }
3
0
98
Nov ’25
BSD Privilege Escalation on macOS
This week I’m handling a DTS incident from a developer who wants to escalate privileges in their app. This is a tricky problem. Over the years I’ve explained aspects of this both here on DevForums and in numerous DTS incidents. Rather than do that again, I figured I’d collect my thoughts into one place and share them here. If you have questions or comments, please start a new thread with an appropriate tag (Service Management or XPC are the most likely candidates here) in the App & System Services > Core OS topic area. Share and Enjoy — Quinn “The Eskimo!” @ Developer Technical Support @ Apple let myEmail = "eskimo" + "1" + "@" + "apple.com" BSD Privilege Escalation on macOS macOS has multiple privilege models. Some of these were inherited from its ancestor platforms. For example, Mach messages has a capability-based privilege model. Others were introduced by Apple to address specific user scenarios. For example, macOS 10.14 and later have mandatory access control (MAC), as discussed in On File System Permissions. One of the most important privilege models is the one inherited from BSD. This is the classic users and groups model. Many subsystems within macOS, especially those with a BSD heritage, use this model. For example, a packet tracing tool must open a BPF device, /dev/bpf*, and that requires root privileges. Specifically, the process that calls open must have an effective user ID of 0, that is, the root user. That process is said to be running as root, and escalating BSD privileges is the act of getting code to run as root. IMPORTANT Escalating privileges does not bypass all privilege restrictions. For example, MAC applies to all processes, including those running as root. Indeed, running as root can make things harder because TCC will not display UI when a launchd daemon trips over a MAC restriction. Escalating privileges on macOS is not straightforward. There are many different ways to do this, each with its own pros and cons. The best approach depends on your specific circumstances. Note If you find operations where a root privilege restriction doesn’t make sense, feel free to file a bug requesting that it be lifted. This is not without precedent. For example, in macOS 10.2 (yes, back in 2002!) we made it possible to implement ICMP (ping) without root privileges. And in macOS 10.14 we removed the restriction on binding to low-number ports (r. 17427890). Nice! Decide on One-Shot vs Ongoing Privileges To start, decide whether you want one-shot or ongoing privileges. For one-shot privileges, the user authorises the operation, you perform it, and that’s that. For example, if you’re creating an un-installer for your product, one-shot privileges make sense because, once it’s done, your code is no longer present on the user’s system. In contrast, for ongoing privileges the user authorises the installation of a launchd daemon. This code always runs as root and thus can perform privileged operations at any time. Folks often ask for one-shot privileges but really need ongoing privileges. A classic example of this is a custom installer. In many cases installation isn’t a one-shot operation. Rather, the installer includes a software update mechanism that needs ongoing privileges. If that’s the case, there’s no point dealing with one-shot privileges at all. Just get ongoing privileges and treat your initial operation as a special case within that. Keep in mind that you can convert one-shot privileges to ongoing privileges by installing a launchd daemon. Just Because You Can, Doesn’t Mean You Should Ongoing privileges represent an obvious security risk. Your daemon can perform an operation, but how does it know whether it should perform that operation? There are two common ways to authorise operations: Authorise the user Authorise the client To authorise the user, use Authorization Services. For a specific example of this, look at the EvenBetterAuthorizationSample sample code. Note This sample hasn’t been updated in a while (sorry!) and it’s ironic that one of the things it demonstrates, opening a low-number port, no longer requires root privileges. However, the core concepts demonstrated by the sample are still valid. The packet trace example from above is a situation where authorising the user with Authorization Services makes perfect sense. By default you might want your privileged helper tool to allow any user to run a packet trace. However, your code might be running on a Mac in a managed environment, where the site admin wants to restrict this to just admin users, or just a specific group of users. A custom authorisation right gives the site admin the flexibility to configure authorisation exactly as they want. Authorising the client is a relatively new idea. It assumes that some process is using XPC to request that the daemon perform a privileged operation. In that case, the daemon can use XPC facilities to ensure that only certain processes can make such a request. Doing this securely is a challenge. For specific API advice, see this post. WARNING This authorisation is based on the code signature of the process’s main executable. If the process loads plug-ins [1], the daemon can’t tell the difference between a request coming from the main executable and a request coming from a plug-in. [1] I’m talking in-process plug-ins here. Plug-ins that run in their own process, such as those managed by ExtensionKit, aren’t a concern. Choose an Approach There are (at least) seven different ways to run with root privileges on macOS: A setuid-root executable The sudo command-line tool The authopen command-line tool AppleScript’s do shell script command, passing true to the administrator privileges parameter The osascript command-line tool to run an AppleScript The AuthorizationExecuteWithPrivileges routine, deprecated since macOS 10.7 The SMJobSubmit routine targeting the kSMDomainSystemLaunchd domain, deprecated since macOS 10.10 The SMJobBless routine, deprecated since macOS 13 An installer package (.pkg) The SMAppService class, a much-needed enhancement to the Service Management framework introduced in macOS 13 Note There’s one additional approach: The privileged file operation feature in NSWorkspace. I’ve not listed it here because it doesn’t let you run arbitrary code with root privileges. It does, however, have one critical benefit: It’s supported in sandboxed apps. See this post for a bunch of hints and tips. To choose between them: Do not use a setuid-root executable. Ever. It’s that simple! Doing that is creating a security vulnerability looking for an attacker to exploit it. If you’re working interactively on the command line, use sudo, authopen, and osascript as you see fit. IMPORTANT These are not appropriate to use as API. Specifically, while it may be possible to invoke sudo programmatically under some circumstances, by the time you’re done you’ll have code that’s way more complicated than the alternatives. If you’re building an ad hoc solution to distribute to a limited audience, and you need one-shot privileges, use either AuthorizationExecuteWithPrivileges or AppleScript. While AuthorizationExecuteWithPrivileges still works, it’s been deprecated for many years. Do not use it in a widely distributed product. The AppleScript approach works great from AppleScript, but you can also use it from a shell script, using osascript, and from native code, using NSAppleScript. See the code snippet later in this post. If you need one-shot privileges in a widely distributed product, consider using SMJobSubmit. While this is officially deprecated, it’s used by the very popular Sparkle update framework, and thus it’s unlikely to break without warning. If you only need escalated privileges to install your product, consider using an installer package. That’s by far the easiest solution to this problem. Keep in mind that an installer package can install a launchd daemon and thereby gain ongoing privileges. If you need ongoing privileges but don’t want to ship an installer package, use SMAppService. If you need to deploy to older systems, use SMJobBless. For instructions on using SMAppService, see Updating helper executables from earlier versions of macOS. For a comprehensive example of how to use SMJobBless, see the EvenBetterAuthorizationSample sample code. For the simplest possible example, see the SMJobBless sample code. That has a Python script to help you debug your setup. Unfortunately this hasn’t been updated in a while; see this thread for more. Hints and Tips I’m sure I’ll think of more of these as time goes by but, for the moment, let’s start with the big one… Do not run GUI code as root. In some cases you can make this work but it’s not supported. Moreover, it’s not safe. The GUI frameworks are huge, and thus have a huge attack surface. If you run GUI code as root, you are opening yourself up to security vulnerabilities. Appendix: Running an AppleScript from Native Code Below is an example of running a shell script with elevated privileges using NSAppleScript. WARNING This is not meant to be the final word in privilege escalation. Before using this, work through the steps above to see if it’s the right option for you. Hint It probably isn’t! let url: URL = … file URL for the script to execute … let script = NSAppleScript(source: """ on open (filePath) if class of filePath is not text then error "Expected a single file path argument." end if set shellScript to "exec " & quoted form of filePath do shell script shellScript with administrator privileges end open """)! // Create the Apple event. let event = NSAppleEventDescriptor( eventClass: AEEventClass(kCoreEventClass), eventID: AEEventID(kAEOpenDocuments), targetDescriptor: nil, returnID: AEReturnID(kAutoGenerateReturnID), transactionID: AETransactionID(kAnyTransactionID) ) // Set up the direct object parameter to be a single string holding the // path to our script. let parameters = NSAppleEventDescriptor(string: url.path) event.setDescriptor(parameters, forKeyword: AEKeyword(keyDirectObject)) // The `as NSAppleEventDescriptor?` is required due to a bug in the // nullability annotation on this method’s result (r. 38702068). var error: NSDictionary? = nil guard let result = script.executeAppleEvent(event, error: &error) as NSAppleEventDescriptor? else { let code = (error?[NSAppleScript.errorNumber] as? Int) ?? 1 let message = (error?[NSAppleScript.errorMessage] as? String) ?? "-" throw NSError(domain: "ShellScript", code: code, userInfo: nil) } let scriptResult = result.stringValue ?? "" Revision History 2025-03-24 Added info about authopen and osascript. 2024-11-15 Added info about SMJobSubmit. Made other minor editorial changes. 2024-07-29 Added a reference to the NSWorkspace privileged file operation feature. Made other minor editorial changes. 2022-06-22 First posted.
0
0
4.1k
Mar ’25
Proper initialization - views, dependencies, laoder and viewcontroller
So i am pretty new to Xcode, but i have been using Python and other language for some while. But I am quite new to the game of view and view control. So it may be that i have over complicated this a bit - and it may be that I have some wrong understanding of the dependencies and appcontroller (that i thought would be a good idea). So here we have a main file we call it app.swift, we have a startupmanager.swift, a appcoordinator and a dependeciescontainer. But it may be that this is either a overkill - or that I am doing it wrong. So my thought was that i had a dependeciecontainer, a appcoordinator for the views and a startupmanager that controll the initialized fetching. I have controlled the memory when i run it - checking if it is higher, lower eg - but it was first when i did my 2 days profile i saw a lot of new errors, like this: Fikser(7291,0x204e516c0) malloc: xzm: failed to initialize deferred reclamation buffer (46). and i also get macro errors, probably from the @Query in my feedview. So my thought was that a depencecie manager and a startupmanager was a good idea together with a app coordinator. But maybe I am wrong - maybe this is not a good idea? Or maybe I am doing some things twice? I have added a lot of prints and debugs for checking. But it seems that it starts off to heavy? import SwiftUI import Combine @MainActor class AppCoordinator: ObservableObject { @Published var isLoggedIn: Bool = false private var authManager: AuthenticationManager = .shared private var cancellables = Set<AnyCancellable>() private let startupManager: StartupManager private let container: DependencyContainer @Published var path = NavigationPath() enum Screen: Hashable, Identifiable { case profile case activeJobs case offers case message var id: Self { self } } init(container: DependencyContainer) { self.container = container self.startupManager = container.makeStartupManager() setupObserving() startupManager.start() print("AppCoordinator initialized!") } private func setupObserving() { authManager.$isAuthenticated .receive(on: RunLoop.main) .sink { [weak self] isAuthenticated in self?.isLoggedIn = isAuthenticated } .store(in: &cancellables) } func userDidLogout() { authManager.logout() path.removeLast(path.count) } func showProfile() { path.append(Screen.profile) } func showActiveJobs() { path.append(Screen.activeJobs) } func showOffers() { path.append(Screen.offers) } func showMessage() { path.append(Screen.message) } @ViewBuilder func viewForDestination(_ destination: Screen) -> some View { switch destination { case .profile: ProfileView() case .activeJobs: ActiveJobsView() case .offers: OffersView() case .message: ChatView() } } @ViewBuilder func viewForJob(_ job: Job) -> some View { PostDetailView( job: job, jobUserDetailsRepository: container.makeJobUserDetailsRepository() ) } @ViewBuilder func viewForProfileSubview(_ destination: ProfileView.ProfileSubviews) -> some View { switch destination{ case .personalSettings: PersonalSettingView() case .historicData: HistoricDataView() case .transactions: TransactionView() case .helpCenter: HelpcenterView() case .helpContract: HelpContractView() } } enum HomeBarDestinations: Hashable, Identifiable { case postJob case jobPosting var id: Self { self } } @ViewBuilder func viewForHomeBar(_ destination: HomeBarView.HomeBarDestinations) -> some View { switch destination { case .postJob: PostJobView() } } } import Apollo import FikserAPI import SwiftData class DependencyContainer { static var shared: DependencyContainer! private let modelContainer: ModelContainer static func initialize(with modelContainer: ModelContainer) { shared = DependencyContainer(modelContainer: modelContainer) } private init(modelContainer: ModelContainer) { self.modelContainer = modelContainer print("DependencyContainer being initialized at ") } @MainActor private lazy var userData: UserData = { return UserData(apollo: Network.shared.apollo) }() @MainActor private lazy var userDetailsRepository: UserDetailsRepository = { return UserDetailsRepository(userData: makeUserData()) }() @MainActor private lazy var jobData: JobData = { return JobData(apollo: Network.shared.apollo) }() @MainActor private lazy var jobRepository: JobRepository = { return JobRepository(jobData: makeJobData(), modelContainer: modelContainer) }() @MainActor func makeUserData() -> UserData { return userData } @MainActor func makeUserDetailsRepository() -> UserDetailsRepository { return userDetailsRepository } @MainActor func makeStartupManager() -> StartupManager { return StartupManager( userDetailsRepository: makeUserDetailsRepository(), jobRepository: makeJobRepository(), authManager: AuthenticationManager.shared, lastUpdateRepository: makeLastUpdateRepository() ) } @MainActor func makeJobData() -> JobData { return jobData } @MainActor func makeJobRepository() -> any JobRepositoryProtocol { return jobRepository } @MainActor private lazy var jobUserData: JobUserData = { return JobUserData(apollo: Network.shared.apollo) }() @MainActor private lazy var jobUserDetailsRepository: JobUserDetailsRepository = { return JobUserDetailsRepository(jobUserData: makeJobUserData()) }() @MainActor func makeJobUserData() -> JobUserData { return jobUserData } @MainActor func makeJobUserDetailsRepository() -> JobUserDetailsRepository { return jobUserDetailsRepository } @MainActor private lazy var lastUpdateData: LastUpdateData = { return LastUpdateData(apollo: Network.shared.apollo) }() @MainActor private lazy var lastUpdateRepository: LastUpdateRepository = { return LastUpdateRepository(lastUpdateData: makeLastUpdateData()) }() @MainActor func makeLastUpdateData() -> LastUpdateData { return lastUpdateData } @MainActor func makeLastUpdateRepository() -> LastUpdateRepository { return lastUpdateRepository } }```
1
0
340
Feb ’25
What happens after BGContinuedProcessingTask "expires"?
If I create a BGContinuedProcessingTaskRequest, register it, and then "do work" within it appropriately reporting progress, and before my task has finished doing all the work it had to do, its expirationHandler triggers... does the task later try again? Or does it lose the execution opportunity until the app is next re-launched to the foreground? In my testing, I never saw my task execute again once expired (which suggests the latter?). I was able to easily force this expiry by starting my task, backgrounding my app, then launching the iOS Camera App. My example is just using test code inspired from https://developer.apple.com/documentation/backgroundtasks/performing-long-running-tasks-on-ios-and-ipados let request = BGContinuedProcessingTaskRequest(identifier: taskIdentifier, title: "Video Upload", subtitle: "Starting Upload") request.strategy = .queue BGTaskScheduler.shared.register(forTaskWithIdentifier: taskIdentifier, using: nil) { task in guard let task = task as? BGContinuedProcessingTask else { return } print("i am a good task") var wasExpired = false task.expirationHandler = { wasExpired = true } let progress = task.progress progress.totalUnitCount = 100 while !progress.isFinished && !wasExpired { progress.completedUnitCount += 1 let formattedProgress = String(format: "%.2f", progress.fractionCompleted * 100) task.updateTitle(task.title, subtitle: "Completed \(formattedProgress)%") sleep(1) } if progress.isFinished { print ("i was a good task") task.setTaskCompleted(success: true) } else { print("i was not a good task") task.setTaskCompleted(success: false) } } try? BGTaskScheduler.shared.submit(request) Apologies if this is clearly stated somewhere and I'm missing it.
1
0
70
Nov ’25
BGContinuedProcessingTask register block not called, submit does not throw an error
I implemented BGContinuedProcessingTask in my app and it seems to be working well for everyone except one user (so far) who has reached out to report nothing happens when they tap the Start Processing button. They have an iPhone 12 Pro Max running iOS 26.1. Restarting iPhone does not fix it. When they turn off the background processing feature in the app, it works. In that case my code directly calls the function to start processing instead of waiting for it to be invoked in the register block (or submit catch block). Is this a bug that's possible to occur, maybe device specific? Or have I done something wrong in the implementation? func startProcessingTapped(_ sender: UIButton) { if isBackgroundProcessingEnabled { startBackgroundContinuedProcessing() } else { startProcessing(backgroundTask: nil) } } func startBackgroundContinuedProcessing() { BGTaskScheduler.shared.register(forTaskWithIdentifier: taskIdentifier, using: .main) { @Sendable [weak self] task in guard self != nil else { return } startProcessing(backgroundTask: task as? BGContinuedProcessingTask) } let request = BGContinuedProcessingTaskRequest(identifier: taskIdentifier, title: title, subtitle: subtitle) request.strategy = .fail if BGTaskScheduler.supportedResources.contains(.gpu) { request.requiredResources = .gpu } do { try BGTaskScheduler.shared.submit(request) } catch { startProcessing(backgroundTask: nil) } } func startProcessing(backgroundTask: BGContinuedProcessingTask?) { // FIXME: Never called for this user when isBackgroundProcessingEnabled is true }
10
0
235
1d
NSXPCListener only working while Debugging `listener failed to activate: xpc_error=[1: Operation not permitted]`
I am building a Mac app that launch a GUI helper app and use XPC to communicate between them. Main app start a XPC Listener using NSXPCListener(machServiceName: "group.com.mycompany.myapp.xpc") Launch the helper app Helper app connect to the XPC service and listen command from main app. What I observe is the app seems can start XPC listener while I run it via Xcode. If I run the app using TestFlight build, or via the compiled debug binary (same one that I use on Xcode), it cannot start the XPC service. Here is what I see in the Console: [0x600000ef7570] activating connection: mach=true listener=true peer=false name=group.com.mycompany.myapp.xpc [0x600000ef7570] listener failed to activate: xpc_error=[1: Operation not permitted] Both main app and helper app are sandboxed and in the same App Group - if they were not, I cannot connect the helper app to main app. I can confirm the entitlement profiles did contain the app group. If I start the main app via xcode, and then launch the helper app manually via Finder, the helper app can connect to the XPC and everything work. It is not related to Release configuration, as the same binary work while I am debugging, but not when I open the binary manually. For context, the main app is a Catalyst app, and helper app is an AppKit app. To start a XPC listener on Catalyst, I had do it in a AppKit bridge via bundle. Given the app worked on Xcode, I believe this approach can work. I just cannot figure out why it only work while I am debugging. Any pointer to debug this issue is greatly appreciated. Thanks!
3
0
117
May ’25
LaunchAgent (Mac) as peripheral doesn't show a pairing request.
The same code built in a regular Mac app (with UI) does get paired. The characteristic properties are [.read, .write, .notify, .notifyEncryptionRequired] The characteristic permissions are [.readEncryptionRequired, .writeEncryptionRequired] My service is primary. In the iOS app (central) I try to read the characteristic, but an error is reported: Error code: 5, Description: Authentication is insufficient.
3
0
80
2w
How to get the full process name like Activity Monitor
I'm try to monitor all processes by ES client. But I found the process name is different from the Activity Monitor displayed. As shown in the picture below, there are ShareSheetUI(Pages) and ShareSheetUI(Finder) processes in Activity Monitor, but I can only get the same name ShareSheetUI, I thought of many ways to display the name in parentheses, but nothing worked, so there is a way to display the process name like Activity Monitor?
1
0
462
Jan ’25
Can we create a bundled non-interactive macOS application which uses CFRunLoop only(instead of using NSApplicationMain to run NSRunLoop)?
I am developing a macOS non-interactive macOS application which does not show any ui. i want to block main thread and do all the work on worker thread . Once done with work in worker thread, want to unblock main thread by exiting event loop to terminate application. Because i dont want to show any UI or use any Foundation/Cocoa functionality, i am thinking of using CFRunLoop to block main thread from exiting until i finish my work in worker thread. When i tried this in a project, I am able to finish work in worker thread after block main thread using CFRunLoop. I also want this application to be a bundled application, which can be launched by double clicking on application bundle . But when i tried it in my xcode project by launching it using double clicking on application bundle, application keeps on toggling/bouncing in the dock menu with a status "Not responding". Although i am able to complete my work in worker thread. import Foundation let runLoop = CFRunLoopGetCurrent() func workerTask() { DispatchQueue.global().async { print("do its work") sleep(5) // do some work print("calling exit event loop") CFRunLoopStop(runLoop) print ("unblocking main thread") } } workerTask () // blocking main thread print ("blocked main thread") CFRunLoopRun() print ("exit") Why i am getting this application bouncing in doc menu behavior ? I tried by using NSApplicationMain instead of CFRunLoop in my project, in that case i didnt get this behavior . Does NSApplicationMain does some extra work before starting NSRunLoop which i am not doing while using CFRunLoop, which is showing this toggling/Bouncing application icon in Dock menu ? or Is this bouncing app icon issue is related to run loop i am using which is CFRunLoop ? Note : If i dont use a bundled application and use a commandline application then i am able to do all steps in worker thread and exit main thread as i wanted after finishing my work . But i need to do all this in application which can be launched using double clicking (bundled applcation). If not by using CFRunLoop, then how can i achive this ? - Create a application which shows no UI and do all work in worker thread while main thread is blocked. Once work is done unblock main thread and exit. And user should be able to launch application using double click the application icon.
3
0
422
Mar ’25
Background Task Execution for FDA Class B Medical App Using BLE
Hello Apple Developer Community, I am developing a medical app that is classified as Class B according to FDA regulations. The app connects to a medical device using Bluetooth Low Energy (BLE) to collect critical medical data such as ECG readings. To ensure accurate data collection and maintain the quality of the medical readings, the app needs to wake up every five minutes in the background and perform tasks for approximately 30 seconds. I understand that iOS has strict limitations on background execution to preserve battery and system performance. However, due to the medical nature of the app and the need for periodic data collection, I am seeking guidance on the following: If I can provide documentation that the app is associated with an FDA-approved Class B medical device, would Apple allow more lenient background task execution policies? Are there specific APIs, such as BackgroundTasks, CoreBluetooth, or other recommended strategies, that could help me achieve this behavior reliably? Is there a process to apply for an exception or special consideration for medical apps that require periodic background activity? Any insights or recommendations would be greatly appreciated. Thank you!
2
0
332
Mar ’25
Concurrency Resources
Swift Concurrency Resources: Forums tags: Concurrency The Swift Programming Language > Concurrency documentation Migrating to Swift 6 documentation WWDC 2022 Session 110351 Eliminate data races using Swift Concurrency — This ‘sailing on the sea of concurrency’ talk is a great introduction to the fundamentals. WWDC 2021 Session 10134 Explore structured concurrency in Swift — The table that starts rolling out at around 25:45 is really helpful. Swift Async Algorithms package Swift Concurrency Proposal Index DevForum post Why is flow control important? forums post Matt Massicotte’s blog Dispatch Resources: Forums tags: Dispatch Dispatch documentation — Note that the Swift API and C API, while generally aligned, are different in many details. Make sure you select the right language at the top of the page. Dispatch man pages — While the standard Dispatch documentation is good, you can still find some great tidbits in the man pages. See Reading UNIX Manual Pages. Start by reading dispatch in section 3. WWDC 2015 Session 718 Building Responsive and Efficient Apps with GCD [1] WWDC 2017 Session 706 Modernizing Grand Central Dispatch Usage [1] Avoid Dispatch Global Concurrent Queues forums post Waiting for an Async Result in a Synchronous Function forums post Share and Enjoy — Quinn “The Eskimo!” @ Developer Technical Support @ Apple let myEmail = "eskimo" + "1" + "@" + "apple.com" [1] These videos may or may not be available from Apple. If not, the URL should help you locate other sources of this info.
0
0
1.9k
Oct ’25
Push-to-Start Live Activity Background Task Issue After App Termination
Desired Behavior I want the app to be able to handle multiple Push-to-Start notifications even when it is completely terminated. Each Live Activity should: Be successfully displayed upon receiving a Push-to-Start notification. Trigger background tasks to send its update token to the server, regardless of the time interval between notifications. Problem I am facing an issue with iOS Live Activities when using Push-to-Start notifications to trigger Live Activities in an app that has been completely terminated. Here’s the detailed scenario: When the app is completely terminated and I send the first Push-to-Start notification: The Live Activity is successfully displayed. didFinishLaunchingWithOptions` is triggered, and background tasks execute correctly, including sending the update token to the server. When I send consecutive Push-to-Start notifications in quick succession (e.g., within a few seconds or minutes): Both notifications successfully display their respective Live Activities. Background tasks are executed correctly for both notifications. However, when there is a longer interval (e.g., 10 minutes) between two Push-to-Start notifications: The first notification works perfectly—it displays the Live Activity, triggers didFinishLaunchingWithOptions, and executes background tasks. The second notification successfully displays the Live Activity but fails to execute any background tasks, such as sending the update token to the server. My HypothesisI suspect that iOS might impose a restriction where background runtime for Push-to-Start notifications can only be granted once within a certain time frame after the app has been terminated. Any insights into why this issue might be occurring or how to ensure consistent background task execution for multiple Push-to-Start notifications would be greatly appreciated!
2
0
414
Mar ’25
How to check for cancellation of background task
When using the old withTaskCancellationHandler(operation:onCancel:isolation:) to run background tasks, you were notified that the background task gets cancelled via the handler being called. SwiftUI provides the backgroundTask(_:action:) modifier which looks quite handy. However how can I check if the background task will be cancelled to avoid being terminated by the system? I have tried to check that via Task.isCancelled but this always returns false no matter what. Is this not possible when using the modifier in which case I should file a bug report? Thanks for your help
0
0
261
Mar ’25
About GCD (Grand Central Dispatch) in an extension.
We are currently developing a VoIP application that supports Local Push extention. I would like to ask for your advice on how the extension works when the iPhone goes into sleep mode. Our App are using GCD (Grand Central Dispatch) to perform periodic processing within the extension, creating a cycle by it. [sample of an our source] class LocalPushProvider: NEAppPushProvider { let activeQueue: DispatchQueue = DispatchQueue(label: "com.myapp.LocalPushProvider.ActiveQueue", autoreleaseFrequency: .workItem) var activeSchecule: Cancellable? override func start(completionHandler: @escaping (Error?) -&gt; Void) { : self.activeSchecule = self.activeQueue.schedule( after: .init(.now() + .seconds(10)), // start schedule after 10sec interval: .seconds(10) // interval 10sec ) { self.activeTimerProc() } completionHandler(nil) } } However In this App that we are confirming that when the iPhone goes into sleep mode, self.activeTimerProc() is not called at 10-second intervals, but is significantly delayed (approximately 30 to 180 seconds). What factors could be causing the timer processing using GCD not to be executed at the specified interval when the iPhone is in sleep mode? Also, please let us know if there are any implementation errors or points to note. I apologize for bothering you during your busy schedule, but I would appreciate your response.
3
0
115
Jun ’25
How to safely maximize concurrent UI rendering
I'm using Swift 6 and tasks to concurrently process multiple PDF files for rendering, and it's working well. But currently I'm manually limiting the number of simultaneous tasks to 2 out of fear that the system might run many tasks concurrently without having enough RAM to do the PDF processing. Testing on a variety of devices, I've tried increasing the task limit and haven't seen any crashes, but I'm quite concerned about the possibility. Any given device might be using a lot of RAM at any moment, and any given PDF might strain resources more than the average PDF. Is there a recommended technique for handling this kind of scenario? Should I not worry about it and just go ahead and start a high number of tasks, trusting that the system won't run too many concurrently and therefore won't run out of RAM?
2
0
266
Mar ’25