Networking

RSS for tag

Explore the networking protocols and technologies used by the device to connect to Wi-Fi networks, Bluetooth devices, and cellular data services.

Networking Documentation

Posts under Networking subtopic

Post

Replies

Boosts

Views

Activity

Networking Resources
General: Forums subtopic: App & System Services > Networking TN3151 Choosing the right networking API Networking Overview document — Despite the fact that this is in the archive, this is still really useful. TLS for App Developers forums post Choosing a Network Debugging Tool documentation WWDC 2019 Session 712 Advances in Networking, Part 1 — This explains the concept of constrained networking, which is Apple’s preferred solution to questions like How do I check whether I’m on Wi-Fi? TN3135 Low-level networking on watchOS TN3179 Understanding local network privacy Adapt to changing network conditions tech talk Understanding Also-Ran Connections forums post Extra-ordinary Networking forums post Foundation networking: Forums tags: Foundation, CFNetwork URL Loading System documentation — NSURLSession, or URLSession in Swift, is the recommended API for HTTP[S] on Apple platforms. Moving to Fewer, Larger Transfers forums post Testing Background Session Code forums post Network framework: Forums tag: Network Network framework documentation — Network framework is the recommended API for TCP, UDP, and QUIC on Apple platforms. Building a custom peer-to-peer protocol sample code (aka TicTacToe) Implementing netcat with Network Framework sample code (aka nwcat) Configuring a Wi-Fi accessory to join a network sample code Moving from Multipeer Connectivity to Network Framework forums post NWEndpoint History and Advice forums post Network Extension (including Wi-Fi on iOS): See Network Extension Resources Wi-Fi Fundamentals TN3111 iOS Wi-Fi API overview Wi-Fi Aware framework documentation Wi-Fi on macOS: Forums tag: Core WLAN Core WLAN framework documentation Wi-Fi Fundamentals Secure networking: Forums tags: Security Apple Platform Security support document Preventing Insecure Network Connections documentation — This is all about App Transport Security (ATS). WWDC 2017 Session 701 Your Apps and Evolving Network Security Standards [1] — This is generally interesting, but the section starting at 17:40 is, AFAIK, the best information from Apple about how certificate revocation works on modern systems. Available trusted root certificates for Apple operating systems support article Requirements for trusted certificates in iOS 13 and macOS 10.15 support article About upcoming limits on trusted certificates support article Apple’s Certificate Transparency policy support article What’s new for enterprise in iOS 18 support article — This discusses new key usage requirements. Technote 2232 HTTPS Server Trust Evaluation Technote 2326 Creating Certificates for TLS Testing QA1948 HTTPS and Test Servers Miscellaneous: More network-related forums tags: 5G, QUIC, Bonjour On FTP forums post Using the Multicast Networking Additional Capability forums post Investigating Network Latency Problems forums post WirelessInsights framework documentation iOS Network Signal Strength forums post Share and Enjoy — Quinn “The Eskimo!” @ Developer Technical Support @ Apple let myEmail = "eskimo" + "1" + "@" + "apple.com" [1] This video is no longer available from Apple, but the URL should help you locate other sources of this info.
0
0
3.8k
Dec ’25
Moving from Multipeer Connectivity to Network Framework
I see a lot of folks spend a lot of time trying to get Multipeer Connectivity to work for them. My experience is that the final result is often unsatisfactory. Instead, my medium-to-long term recommendation is to use Network framework instead. This post explains how you might move from Multipeer Connectivity to Network framework. If you have questions or comments, put them in a new thread. Place it in the App & System Services > Networking topic area and tag it with Multipeer Connectivity and Network framework. Share and Enjoy — Quinn “The Eskimo!” @ Developer Technical Support @ Apple let myEmail = "eskimo" + "1" + "@" + "apple.com" Moving from Multipeer Connectivity to Network Framework Multipeer Connectivity has a number of drawbacks: It has an opinionated networking model, where every participant in a session is a symmetric peer. Many apps work better with the traditional client/server model. It offers good latency but poor throughput. It doesn’t support flow control, aka back pressure, which severely constrains its utility for general-purpose networking. It includes a number of UI components that are effectively obsolete. It hasn’t evolved in recent years. For example, it relies on NSStream, which has been scheduled for deprecation as far as networking is concerned. It always enables peer-to-peer Wi-Fi, something that’s not required for many apps and can impact the performance of the network (see Enable peer-to-peer Wi-Fi, below, for more about this). Its security model requires the use of PKI — public key infrastructure, that is, digital identities and certificates — which are tricky to deploy in a peer-to-peer environment. It has some gnarly bugs. IMPORTANT Many folks use Multipeer Connectivity because they think it’s the only way to use peer-to-peer Wi-Fi. That’s not the case. Network framework has opt-in peer-to-peer Wi-Fi support. See Enable peer-to-peer Wi-Fi, below. If Multipeer Connectivity is not working well for you, consider moving to Network framework. This post explains how to do that in 13 easy steps (-: Plan for security Select a network architecture Create a peer identifier Choose a protocol to match your send mode Discover peers Design for privacy Configure your connections Manage a listener Manage a connection Send and receive reliable messages Send and receive best effort messages Start a stream Send a resource Finally, at the end of the post you’ll find two appendices: Final notes contains some general hints and tips. Symbol cross reference maps symbols in the Multipeer Connectivity framework to sections of this post. Consult it if you’re not sure where to start with a specific Multipeer Connectivity construct. Plan for security The first thing you need to think about is security. Multipeer Connectivity offers three security models, expressed as choices in the MCEncryptionPreference enum: .none for no security .optional for optional security .required for required security For required security each peer must have a digital identity. Optional security is largely pointless. It’s more complex than no security but doesn’t yield any benefits. So, in this post we’ll focus on the no security and required security models. Your security choice affects the network protocols you can use: QUIC is always secure. WebSocket, TCP, and UDP can be used with and without TLS security. QUIC security only supports PKI. TLS security supports both TLS-PKI and pre-shared key (PSK). You might find that TLS-PSK is easier to deploy in a peer-to-peer environment. To configure the security of the QUIC protocol: func quicParameters() -> NWParameters { let quic = NWProtocolQUIC.Options(alpn: ["MyAPLN"]) let sec = quic.securityProtocolOptions … configure `sec` here … return NWParameters(quic: quic) } To enable TLS over TCP: func tlsOverTCPParameters() -> NWParameters { let tcp = NWProtocolTCP.Options() let tls = NWProtocolTLS.Options() let sec = tls.securityProtocolOptions … configure `sec` here … return NWParameters(tls: tls, tcp: tcp) } To enable TLS over UDP, also known as DTLS: func dtlsOverUDPParameters() -> NWParameters { let udp = NWProtocolUDP.Options() let dtls = NWProtocolTLS.Options() let sec = dtls.securityProtocolOptions … configure `sec` here … return NWParameters(dtls: dtls, udp: udp) } To configure TLS with a local digital identity and custom server trust evaluation: func configureTLSPKI(sec: sec_protocol_options_t, identity: SecIdentity) { let secIdentity = sec_identity_create(identity)! sec_protocol_options_set_local_identity(sec, secIdentity) if disableServerTrustEvaluation { sec_protocol_options_set_verify_block(sec, { metadata, secTrust, completionHandler in let trust = sec_trust_copy_ref(secTrust).takeRetainedValue() … evaluate `trust` here … completionHandler(true) }, .main) } } To configure TLS with a pre-shared key: func configureTLSPSK(sec: sec_protocol_options_t, identity: Data, key: Data) { let identityDD = identity.withUnsafeBytes { DispatchData(bytes: $0) } let keyDD = identity.withUnsafeBytes { DispatchData(bytes: $0) } sec_protocol_options_add_pre_shared_key( sec, keyDD as dispatch_data_t, identityDD as dispatch_data_t ) sec_protocol_options_append_tls_ciphersuite( sec, tls_ciphersuite_t(rawValue: TLS_PSK_WITH_AES_128_GCM_SHA256)! ) } Select a network architecture Multipeer Connectivity uses a star network architecture. All peers are equal, and every peer is effectively connected to every peer. Many apps work better with the client/server model, where one peer acts on the server and all the others are clients. Network framework supports both models. To implement a client/server network architecture with Network framework: Designate one peer as the server and all the others as clients. On the server, use NWListener to listen for incoming connections. On each client, use NWConnection to made an outgoing connection to the server. To implement a star network architecture with Network framework: On each peer, start a listener. And also start a connection to each of the other peers. This is likely to generate a lot of redundant connections, as peer A connects to peer B and vice versa. You’ll need to a way to deduplicate those connections, which is the subject of the next section. IMPORTANT While the star network architecture is more likely to create redundant connections, the client/server network architecture can generate redundant connections as well. The advice in the next section applies to both architectures. Create a peer identifier Multipeer Connectivity uses MCPeerID to uniquely identify each peer. There’s nothing particularly magic about MCPeerID; it’s effectively a wrapper around a large random number. To identify each peer in Network framework, generate your own large random number. One good choice for a peer identifier is a locally generated UUID, created using the system UUID type. Some Multipeer Connectivity apps persist their local MCPeerID value, taking advantage of its NSSecureCoding support. You can do the same with a UUID, using either its string representation or its Codable support. IMPORTANT Before you decide to persist a peer identifier, think about the privacy implications. See Design for privacy below. Avoid having multiple connections between peers; that’s both wasteful and potentially confusing. Use your peer identifier to deduplicate connections. Deduplicating connections in a client/server network architecture is easy. Have each client check in with the server with its peer identifier. If the server already has a connection for that identifier, it can either close the old connection and keep the new connection, or vice versa. Deduplicating connections in a star network architecture is a bit trickier. One option is to have each peer send its peer identifier to the other peer and then the peer with the ‘best’ identifier wins. For example, imagine that peer A makes an outgoing connection to peer B while peer B is simultaneously making an outgoing connection to peer A. When a peer receives a peer identifier from a connection, it checks for a duplicate. If it finds one, it compares the peer identifiers and then chooses a connection to drop based on that comparison: if local peer identifier > remote peer identifier then drop outgoing connection else drop incoming connection end if So, peer A drops its incoming connection and peer B drops its outgoing connection. Et voilà! Choose a protocol to match your send mode Multipeer Connectivity offers two send modes, expressed as choices in the MCSessionSendDataMode enum: .reliable for reliable messages .unreliable for best effort messages Best effort is useful when sending latency-sensitive data, that is, data where retransmission is pointless because, by the retransmission arrives, the data will no longer be relevant. This is common in audio and video applications. In Network framework, the send mode is set by the connection’s protocol: A specific QUIC connection is either reliable or best effort. WebSocket and TCP are reliable. UDP is best effort. Start with a reliable connection. In many cases you can stop there, because you never need a best effort connection. If you’re not sure which reliable protocol to use, choose WebSocket. It has key advantages over other protocols: It supports both security models: none and required. Moreover, its required security model supports both TLS-PKI and TLS PSK. In contrast, QUIC only supports the required security model, and within that model it only supports TLS-PKI. It allows you to send messages over the connection. In contrast, TCP works in terms of bytes, meaning that you have to add your own framing. If you need a best effort connection, get started with a reliable connection and use that connection to set up a parallel best effort connection. For example, you might have an exchange like this: Peer A uses its reliable WebSocket connection to peer B to send a request for a parallel best effort UDP connection. Peer B receives that, opens a UDP listener, and sends the UDP listener’s port number back to peer A. Peer A opens its parallel UDP connection to that port on peer B. Note For step 3, get peer B’s IP address from the currentPath property of the reliable WebSocket connection. If you’re not sure which best effort protocol to use, use UDP. While it is possible to use QUIC in datagram mode, it has the same security complexities as QUIC in reliable mode. Discover peers Multipeer Connectivity has a types for advertising a peer’s session (MCAdvertiserAssistant) and a type for browsering for peer (MCNearbyServiceBrowser). In Network framework, configure the listener to advertise its service by setting the service property of NWListener: let listener: NWListener = … listener.service = .init(type: "_example._tcp") listener.serviceRegistrationUpdateHandler = { change in switch change { case .add(let endpoint): … update UI for the added listener endpoint … break case .remove(let endpoint): … update UI for the removed listener endpoint … break @unknown default: break } } listener.stateUpdateHandler = … handle state changes … listener.newConnectionHandler = … handle the new connection … listener.start(queue: .main) This example also shows how to use the serviceRegistrationUpdateHandler to update your UI to reflect changes in the listener. Note This example uses a service type of _example._tcp. See About service types, below, for more details on that. To browse for services, use NWBrowser: let browser = NWBrowser(for: .bonjour(type: "_example._tcp", domain: nil), using: .tcp) browser.browseResultsChangedHandler = { latestResults, _ in … update UI to show the latest results … } browser.stateUpdateHandler = … handle state changes … browser.start(queue: .main) This yields NWEndpoint values for each peer that it discovers. To connect to a given peer, create an NWConnection with that endpoint. About service types The examples in this post use _example._tcp for the service type. The first part, _example, is directly analogous to the serviceType value you supply when creating MCAdvertiserAssistant and MCNearbyServiceBrowser objects. The second part is either _tcp or _udp depending on the underlying transport protocol. For TCP and WebSocket, use _tcp. For UDP and QUIC, use _udp. Service types are described in RFC 6335. If you deploy an app that uses a new service type, register that service type with IANA. Discovery UI Multipeer Connectivity also has UI components for advertising (MCNearbyServiceAdvertiser) and browsing (MCBrowserViewController). There’s no direct equivalent to this in Network framework. Instead, use your preferred UI framework to create a UI that best suits your requirements. Note If you’re targeting Apple TV, check out the DeviceDiscoveryUI framework. Discovery TXT records The Bonjour service discovery protocol used by Network framework supports TXT records. Using these, a listener can associate metadata with its service and a browser can get that metadata for each discovered service. To advertise a TXT record with your listener, include it it the service property value: let listener: NWListener = … let peerID: UUID = … var txtRecord = NWTXTRecord() txtRecord["peerID"] = peerID.uuidString listener.service = .init(type: "_example._tcp", txtRecord: txtRecord.data) To browse for services and their associated TXT records, use the .bonjourWithTXTRecord(…) descriptor: let browser = NWBrowser(for: .bonjourWithTXTRecord(type: "_example._tcp", domain: nil), using: .tcp) browser.browseResultsChangedHandler = { latestResults, _ in for result in latestResults { guard case .bonjour(let txtRecord) = result.metadata, let peerID = txtRecord["peerID"] else { continue } // … examine `result` and `peerID` … _ = peerID } } This example includes the peer identifier in the TXT record with the goal of reducing the number of duplicate connections, but that’s just one potential use for TXT records. Design for privacy This section lists some privacy topics to consider as you implement your app. Obviously this isn’t an exhaustive list. For general advice on this topic, see Protecting the User’s Privacy. There can be no privacy without security. If you didn’t opt in to security with Multipeer Connectivity because you didn’t want to deal with PKI, consider the TLS-PSK options offered by Network framework. For more on this topic, see Plan for security. When you advertise a service, the default behaviour is to use the user-assigned device name as the service name. To override that, create a service with a custom name: let listener: NWListener = … let name: String = … listener.service = .init(name: name, type: "_example._tcp") It’s not uncommon for folks to use the peer identifier as the service name. Whether that’s a good option depends on the user experience of your product: Some products present a list of remote peers and have the user choose from that list. In that case it’s best to stick with the user-assigned device name, because that’s what the user will recognise. Some products automatically connect to services as they discover them. In that case it’s fine to use the peer identifier as the service name, because the user won’t see it anyway. If you stick with the user-assigned device name, consider advertising the peer identifier in your TXT record. See Discovery TXT records. IMPORTANT Using a peer identifier in your service name or TXT record is a heuristic to reduce the number of duplicate connections. Don’t rely on it for correctness. Rather, deduplicate connections using the process described in Create a peer identifier. There are good reasons to persist your peer identifier, but doing so isn’t great for privacy. Persisting the identifier allows for tracking of your service over time and between networks. Consider whether you need a persistent peer identifier at all. If you do, consider whether it makes sense to rotate it over time. A persistent peer identifier is especially worrying if you use it as your service name or put it in your TXT record. Configure your connections Multipeer Connectivity’s symmetric architecture means that it uses a single type, MCSession, to manage the connections to all peers. In Network framework, that role is fulfilled by two types: NWListener to listen for incoming connections. NWConnection to make outgoing connections. Both types require you to supply an NWParameters value that specifies the network protocol and options to use. In addition, when creating an NWConnection you pass in an NWEndpoint to tell it the service to connect to. For example, here’s how to configure a very simple listener for TCP: let parameters = NWParameters.tcp let listener = try NWListener(using: parameters) … continue setting up the listener … And here’s how you might configure an outgoing TCP connection: let parameters = NWParameters.tcp let endpoint = NWEndpoint.hostPort(host: "example.com", port: 80) let connection = NWConnection.init(to: endpoint, using: parameters) … continue setting up the connection … NWParameters has properties to control exactly what protocol to use and what options to use with those protocols. To work with QUIC connections, use code like that shown in the quicParameters() example from the Security section earlier in this post. To work with TCP connections, use the NWParameters.tcp property as shown above. To enable TLS on your TCP connections, use code like that shown in the tlsOverTCPParameters() example from the Security section earlier in this post. To work with WebSocket connections, insert it into the application protocols array: let parameters = NWParameters.tcp let ws = NWProtocolWebSocket.Options(.version13) parameters.defaultProtocolStack.applicationProtocols.insert(ws, at: 0) To enable TLS on your WebSocket connections, use code like that shown in the tlsOverTCPParameters() example to create your base parameters and then add the WebSocket application protocol to that. To work with UDP connections, use the NWParameters.udp property: let parameters = NWParameters.udp To enable TLS on your UDP connections, use code like that shown in the dtlsOverUDPParameters() example from the Security section earlier in this post. Enable peer-to-peer Wi-Fi By default, Network framework doesn’t use peer-to-peer Wi-Fi. To enable that, set the includePeerToPeer property on the parameters used to create your listener and connection objects. parameters.includePeerToPeer = true IMPORTANT Enabling peer-to-peer Wi-Fi can impact the performance of the network. Only opt into it if it’s a significant benefit to your app. If you enable peer-to-peer Wi-Fi, it’s critical to stop network operations as soon as you’re done with them. For example, if you’re browsing for services with peer-to-peer Wi-Fi enabled and the user picks a service, stop the browse operation immediately. Otherwise, the ongoing browse operation might affect the performance of your connection. Manage a listener In Network framework, use NWListener to listen for incoming connections: let parameters: NWParameters = .tcp … configure parameters … let listener = try NWListener(using: parameters) listener.service = … service details … listener.serviceRegistrationUpdateHandler = … handle service registration changes … listener.stateUpdateHandler = { newState in … handle state changes … } listener.newConnectionHandler = { newConnection in … handle the new connection … } listener.start(queue: .main) For details on how to set up parameters, see Configure your connections. For details on how to set up up service and serviceRegistrationUpdateHandler, see Discover peers. Network framework calls your state update handler when the listener changes state: let listener: NWListener = … listener.stateUpdateHandler = { newState in switch newState { case .setup: // The listener has not yet started. … case .waiting(let error): // The listener tried to start and failed. It might recover in the // future. … case .ready: // The listener is running. … case .failed(let error): // The listener tried to start and failed irrecoverably. … case .cancelled: // The listener was cancelled by you. … @unknown default: break } } Network framework calls your new connection handler when a client connects to it: var connections: [NWConnection] = [] let listener: NWListener = listener listener.newConnectionHandler = { newConnection in … configure the new connection … newConnection.start(queue: .main) connections.append(newConnection) } IMPORTANT Don’t forget to call start(queue:) on your connections. In Multipeer Connectivity, the session (MCSession) keeps track of all the peers you’re communicating with. With Network framework, that responsibility falls on you. This example uses a simple connections array for that purpose. In your app you may or may not need a more complex data structure. For example: In the client/server network architecture, the client only needs to manage the connections to a single peer, the server. On the other hand, the server must managed the connections to all client peers. In the star network architecture, every peer must maintain a listener and connections to each of the other peers. Understand UDP flows Network framework handles UDP using the same NWListener and NWConnection types as it uses for TCP. However, the underlying UDP protocol is not implemented in terms of listeners and connections. To resolve this, Network framework works in terms of UDP flows. A UDP flow is defined as a bidirectional sequence of UDP datagrams with the same 4 tuple (local IP address, local port, remote IP address, and remote port). In Network framework: Each NWConnection object manages a single UDP flow. If an NWListener receives a UDP datagram whose 4 tuple doesn’t match any known NWConnection, it creates a new NWConnection. Manage a connection In Network framework, use NWConnection to start an outgoing connection: var connections: [NWConnection] = [] let parameters: NWParameters = … let endpoint: NWEndpoint = … let connection = NWConnection(to: endpoint, using: parameters) connection.stateUpdateHandler = … handle state changes … connection.viabilityUpdateHandler = … handle viability changes … connection.pathUpdateHandler = … handle path changes … connection.betterPathUpdateHandler = … handle better path notifications … connection.start(queue: .main) connections.append(connection) As in the listener case, you’re responsible for keeping track of this connection. Each connection supports four different handlers. Of these, the state and viability update handlers are the most important. For information about the path update and better path handlers, see the NWConnection documentation. Network framework calls your state update handler when the connection changes state: let connection: NWConnection = … connection.stateUpdateHandler = { newState in switch newState { case .setup: // The connection has not yet started. … case .preparing: // The connection is starting. … case .waiting(let error): // The connection tried to start and failed. It might recover in the // future. … case .ready: // The connection is running. … case .failed(let error): // The connection tried to start and failed irrecoverably. … case .cancelled: // The connection was cancelled by you. … @unknown default: break } } If you a connection is in the .waiting(_:) state and you want to force an immediate retry, call the restart() method. Network framework calls your viability update handler when its viability changes: let connection: NWConnection = … connection.viabilityUpdateHandler = { isViable in … react to viability changes … } A connection becomes inviable when a network resource that it depends on is unavailable. A good example of this is the network interface that the connection is running over. If you have a connection running over Wi-Fi, and the user turns off Wi-Fi or moves out of range of their Wi-Fi network, any connection running over Wi-Fi becomes inviable. The inviable state is not necessarily permanent. To continue the above example, the user might re-enable Wi-Fi or move back into range of their Wi-Fi network. If the connection becomes viable again, Network framework calls your viability update handler with a true value. It’s a good idea to debounce the viability handler. If the connection becomes inviable, don’t close it down immediately. Rather, wait for a short while to see if it becomes viable again. If a connection has been inviable for a while, you get to choose as to how to respond. For example, you might close the connection down or inform the user. To close a connection, call the cancel() method. This gracefully disconnects the underlying network connection. To close a connection immediately, call the forceCancel() method. This is not something you should do as a matter of course, but it does make sense in exceptional circumstances. For example, if you’ve determined that the remote peer has gone deaf, it makes sense to cancel it in this way. Send and receive reliable messages In Multipeer Connectivity, a single session supports both reliable and best effort send modes. In Network framework, a connection is either reliable or best effort, depending on the underlying network protocol. The exact mechanism for sending a message depends on the underlying network protocol. A good protocol for reliable messages is WebSocket. To send a message on a WebSocket connection: let connection: NWConnection = … let message: Data = … let metadata = NWProtocolWebSocket.Metadata(opcode: .binary) let context = NWConnection.ContentContext(identifier: "send", metadata: [metadata]) connection.send(content: message, contentContext: context, completion: .contentProcessed({ error in // … check `error` … _ = error })) In WebSocket, the content identifier is ignored. Using an arbitrary fixed value, like the send in this example, is just fine. Multipeer Connectivity allows you to send a message to multiple peers in a single send call. In Network framework each send call targets a specific connection. To send a message to multiple peers, make a send call on the connection associated with each peer. If your app needs to transfer arbitrary amounts of data on a connection, it must implement flow control. See Start a stream, below. To receive messages on a WebSocket connection: func startWebSocketReceive(on connection: NWConnection) { connection.receiveMessage { message, _, _, error in if let error { … handle the error … return } if let message { … handle the incoming message … } startWebSocketReceive(on: connection) } } IMPORTANT WebSocket preserves message boundaries, which is one of the reasons why it’s ideal for your reliable messaging connections. If you use a streaming protocol, like TCP or QUIC streams, you must do your own framing. A good way to do that is with NWProtocolFramer. If you need the metadata associated with the message, get it from the context parameter: connection.receiveMessage { message, context, _, error in … if let message, let metadata = context?.protocolMetadata(definition: NWProtocolWebSocket.definition) as? NWProtocolWebSocket.Metadata { … handle the incoming message and its metadata … } … } Send and receive best effort messages In Multipeer Connectivity, a single session supports both reliable and best effort send modes. In Network framework, a connection is either reliable or best effort, depending on the underlying network protocol. The exact mechanism for sending a message depends on the underlying network protocol. A good protocol for best effort messages is UDP. To send a message on a UDP connection: let connection: NWConnection = … let message: Data = … connection.send(content: message, completion: .idempotent) IMPORTANT UDP datagrams have a theoretical maximum size of just under 64 KiB. However, sending a large datagram results in IP fragmentation, which is very inefficient. For this reason, Network framework prevents you from sending UDP datagrams that will be fragmented. To find the maximum supported datagram size for a connection, gets its maximumDatagramSize property. To receive messages on a UDP connection: func startUDPReceive(on connection: NWConnection) { connection.receiveMessage { message, _, _, error in if let error { … handle the error … return } if let message { … handle the incoming message … } startUDPReceive(on: connection) } } This is exactly the same code as you’d use for WebSocket. Start a stream In Multipeer Connectivity, you can ask the session to start a stream to a specific peer. There are two ways to achieve this in Network framework: If you’re using QUIC for your reliable connection, start a new QUIC stream over that connection. This is one place that QUIC shines. You can run an arbitrary number of QUIC connections over a single QUIC connection group, and QUIC manages flow control (see below) for each connection and for the group as a whole. If you’re using some other protocol for your reliable connection, like WebSocket, you must start a new connection. You might use TCP for this new connection, but it’s not unreasonable to use WebSocket or QUIC. If you need to open a new connection for your stream, you can manage that process over your reliable connection. Choose a protocol to match your send mode explains the general approach for this, although in that case it’s opening a parallel best effort UDP connection rather than a parallel stream connection. The main reason to start a new stream is that you want to send a lot of data to the remote peer. In that case you need to worry about flow control. Flow control applies to both the send and receive side. IMPORTANT Failing to implement flow control can result in unbounded memory growth in your app. This is particularly bad on iOS, where jetsam will terminate your app if it uses too much memory. On the send side, implement flow control by waiting for the connection to call your completion handler before generating and sending more data. For example, on a TCP connection or QUIC stream you might have code like this: func sendNextChunk(on connection: NWConnection) { let chunk: Data = … read next chunk from disk … connection.send(content: chunk, completion: .contentProcessed({ error in if let error { … handle error … return } sendNextChunk(on: connection) })) } This acts like an asynchronous loop. The first send call completes immediately because the connection just copies the data to its send buffer. In response, your app generates more data. This continues until the connection’s send buffer fills up, at which point it defers calling your completion handler. Eventually, the connection moves enough data across the network to free up space in its send buffer, and calls your completion handler. Your app generates another chunk of data For best performance, use a chunk size of at least 64 KiB. If you’re expecting to run on a fast device with a fast network, a chunk size of 1 MiB is reasonable. Receive-side flow control is a natural extension of the standard receive pattern. For example, on a TCP connection or QUIC stream you might have code like this: func receiveNextChunk(on connection: NWConnection) { let chunkSize = 64 * 1024 connection.receive(minimumIncompleteLength: chunkSize, maximumLength: chunkSize) { chunk, _, isComplete, error in if let chunk { … write chunk to disk … } if isComplete { … close the file … return } if let error { … handle the error … return } receiveNextChunk(on: connection) } } IMPORTANT The above is cast in terms of writing the chunk to disk. That’s important, because it prevents unbounded memory growth. If, for example, you accumulated the chunks into an in-memory buffer, that buffer could grow without bound, which risks jetsam terminating your app. The above assumes that you can read and write chunks of data synchronously and promptly, for example, reading and writing a file on a local disk. That’s not always the case. For example, you might be writing data to an accessory over a slow interface, like Bluetooth LE. In such cases you need to read and write each chunk asynchronously. This results in a structure where you read from an asynchronous input and write to an asynchronous output. For an example of how you might approach this, albeit in a very different context, see Handling Flow Copying. Send a resource In Multipeer Connectivity, you can ask the session to send a complete resource, identified by either a file or HTTP URL, to a specific peer. Network framework has no equivalent support for this, but you can implement it on top of a stream: To send, open a stream and then read chunks of data using URLSession and send them over that stream. To receive, open a stream and then receive chunks of data from that stream and write those chunks to disk. In this situation it’s critical to implement flow control, as described in the previous section. Final notes This section collects together some general hints and tips. Concurrency In Multipeer Connectivity, each MCSession has its own internal queue and calls delegate callbacks on that queue. In Network framework, you get to control the queue used by each object for its callbacks. A good pattern is to have a single serial queue for all networking, including your listener and all connections. In a simple app it’s reasonable to use the main queue for networking. If you do this, be careful not to do CPU intensive work in your networking callbacks. For example, if you receive a message that holds JPEG data, don’t decode that data on the main queue. Overriding protocol defaults Many network protocols, most notably TCP and QUIC, are intended to be deployed at vast scale across the wider Internet. For that reason they use default options that aren’t optimised for local networking. Consider changing these defaults in your app. TCP has the concept of a send timeout. If you send data on a TCP connection and TCP is unable to successfully transfer it to the remote peer within the send timeout, TCP will fail the connection. The default send timeout is infinite. TCP just keeps trying. To change this, set the connectionDropTime property. TCP has the concept of keepalives. If a connection is idle, TCP will send traffic on the connection for two reasons: If the connection is running through a NAT, the keepalives prevent the NAT mapping from timing out. If the remote peer is inaccessible, the keepalives fail, which in turn causes the connection to fail. This prevents idle but dead connections from lingering indefinitely. TCP keepalives default to disabled. To enable and configure them, set the enableKeepalive property. To configure their behaviour, set the keepaliveIdle, keepaliveCount, and keepaliveInterval properties. Symbol cross reference If you’re not sure where to start with a specific Multipeer Connectivity construct, find it in the tables below and follow the link to the relevant section. [Sorry for the poor formatting here. DevForums doesn’t support tables properly, so I’ve included the tables as preformatted text.] | For symbol | See | | ----------------------------------- | --------------------------- | | `MCAdvertiserAssistant` | *Discover peers* | | `MCAdvertiserAssistantDelegate` | *Discover peers* | | `MCBrowserViewController` | *Discover peers* | | `MCBrowserViewControllerDelegate` | *Discover peers* | | `MCNearbyServiceAdvertiser` | *Discover peers* | | `MCNearbyServiceAdvertiserDelegate` | *Discover peers* | | `MCNearbyServiceBrowser` | *Discover peers* | | `MCNearbyServiceBrowserDelegate` | *Discover peers* | | `MCPeerID` | *Create a peer identifier* | | `MCSession` | See below. | | `MCSessionDelegate` | See below. | Within MCSession: | For symbol | See | | --------------------------------------------------------- | ------------------------------------ | | `cancelConnectPeer(_:)` | *Manage a connection* | | `connectedPeers` | *Manage a listener* | | `connectPeer(_:withNearbyConnectionData:)` | *Manage a connection* | | `disconnect()` | *Manage a connection* | | `encryptionPreference` | *Plan for security* | | `myPeerID` | *Create a peer identifier* | | `nearbyConnectionData(forPeer:withCompletionHandler:)` | *Discover peers* | | `securityIdentity` | *Plan for security* | | `send(_:toPeers:with:)` | *Send and receive reliable messages* | | `sendResource(at:withName:toPeer:withCompletionHandler:)` | *Send a resource* | | `startStream(withName:toPeer:)` | *Start a stream* | Within MCSessionDelegate: | For symbol | See | | ---------------------------------------------------------------------- | ------------------------------------ | | `session(_:didFinishReceivingResourceWithName:fromPeer:at:withError:)` | *Send a resource* | | `session(_:didReceive:fromPeer:)` | *Send and receive reliable messages* | | `session(_:didReceive:withName:fromPeer:)` | *Start a stream* | | `session(_:didReceiveCertificate:fromPeer:certificateHandler:)` | *Plan for security* | | `session(_:didStartReceivingResourceWithName:fromPeer:with:)` | *Send a resource* | | `session(_:peer:didChange:)` | *Manage a connection* | Revision History 2025-04-11 Added some advice as to whether to use the peer identifier in your service name. Expanded the discussion of how to deduplicate connections in a star network architecture. 2025-03-20 Added a link to the DeviceDiscoveryUI framework to the Discovery UI section. Made other minor editorial changes. 2025-03-11 Expanded the Enable peer-to-peer Wi-Fi section to stress the importance of stopping network operations once you’re done with them. Added a link to that section from the list of Multipeer Connectivity drawbacks. 2025-03-07 First posted.
0
0
1.5k
Apr ’25
انشاء تطبيق جديد
اريد انشاء لعبه في ابل ستور و تكون اول صفحه تكون شروط و الاحكام و خيار بدا اللعبه200 فئات من السعوديه من مسلسل من العب من بنات و بس وقطر و الإمارات وانمي ومسلسلات تركيه و السياحه و الدول وشركات عالميه و شركات كترونيه
0
0
11
2h
iOS Network Signal Strength
This issue has cropped up many times here on DevForums. Someone recently opened a DTS tech support incident about it, and I used that as an opportunity to post a definitive response here. If you have questions or comments about this, start a new thread and tag it with Network so that I see it. Share and Enjoy — Quinn “The Eskimo!” @ Developer Technical Support @ Apple let myEmail = "eskimo" + "1" + "@" + "apple.com" iOS Network Signal Strength The iOS SDK has no general-purpose API that returns Wi-Fi or cellular signal strength in real time. Given that this has been the case for more than 10 years, it’s safe to assume that it’s not an accidental omission but a deliberate design choice. For information about the Wi-Fi APIs that are available on iOS, see TN3111 iOS Wi-Fi API overview. Network performance Most folks who ask about this are trying to use the signal strength to estimate network performance. This is a technique that I specifically recommend against. That’s because it produces both false positives and false negatives: The network signal might be weak and yet your app has excellent connectivity. For example, an iOS device on stage at WWDC might have terrible WWAN and Wi-Fi signal but that doesn’t matter because it’s connected to the Ethernet. The network signal might be strong and yet your app has very poor connectivity. For example, if you’re on a train, Wi-Fi signal might be strong in each carriage but the overall connection to the Internet is poor because it’s provided by a single over-stretched WWAN. The only good way to determine whether connectivity is good is to run a network request and see how it performs. If you’re issuing a lot of requests, use the performance of those requests to build a running estimate of how well the network is doing. Indeed, Apple practices what we preach here: This is exactly how HTTP Live Streaming works. Remember that network performance can change from moment to moment. The user’s train might enter or leave a tunnel, the user might step into a lift, and so on. If you build code to estimate the network performance, make sure it reacts to such changes. Keeping all of the above in mind, iOS 26 beta has two new APIs related to this issue: Network framework now offers a linkQuality property. See this post for my take on how to use this effectively. The WirelessInsights framework can notify you of anticipated WWAN condition changes. But what about this code I found on the ’net? Over the years various folks have used various unsupported techniques to get around this limitation. If you find code on the ’net that, say, uses KVC to read undocumented properties, or grovels through system logs, or walks the view hierarchy of the status bar, don’t use it. Such techniques are unsupported and, assuming they haven’t broken yet, are likely to break in the future. But what about Hotspot Helper? Hotspot Helper does have an API to read Wi-Fi signal strength, namely, the signalStrength property. However, this is not a general-purpose API. Like the rest of Hotspot Helper, this is tied to the specific use case for which it was designed. This value only updates in real time for networks that your hotspot helper is managing, as indicated by the isChosenHelper property. But what about MetricKit? MetricKit is so cool. Amongst other things, it supports the MXCellularConditionMetric payload, which holds a summary of the cellular conditions while your app was running. However, this is not a real-time signal strength value. But what if I’m working for a carrier? This post is about APIs in the iOS SDK. If you’re working for a carrier, discuss your requirements with your carrier’s contact at Apple. Revision History 2025-07-02 Updated to cover new features in the iOS 16 beta. Made other minor editorial changes. 2022-12-01 First posted.
0
0
4.5k
Jul ’25
NWEndpoint History and Advice
The path from Network Extension’s in-provider networking APIs to Network framework has been long and somewhat rocky. The most common cause of confusion is NWEndpoint, where the same name can refer to two completely different types. I’ve helped a bunch of folks with this over the years, and I’ve decided to create this post to collect together all of those titbits. If you have questions or comments, please put them in a new thread. Put it in the App & System Services > Networking subtopic and tag it with Network Extension. That way I’ll be sure to see it go by. Share and Enjoy — Quinn “The Eskimo!” @ Developer Technical Support @ Apple let myEmail = "eskimo" + "1" + "@" + "apple.com" NWEndpoint History and Advice A tale that spans three APIs, two languages, and ten years. The NWEndpoint type has a long and complex history, and if you’re not aware of that history you can bump into weird problems. The goal of this post is to explain the history and then offer advice on how to get around specific problems. IMPORTANT This post focuses on NWEndpoint, because that’s the type that causes the most problems, but there’s a similar situation with NWPath. The History In iOS 9 Apple introduced the Network Extension (NE) framework, which offers a convenient way for developers to create a custom VPN transport. Network Extension types all have the NE prefix. Note I’m gonna use iOS versions here, just to keep the text simple. If you’re targeting some other platform, use this handy conversion table: iOS | macOS | tvOS | watchOS | visionOS --- + ----- + ---- + ------- + -------- 9 | 10.11 | 9 | 2 | - 12 | 10.14 | 12 | 5 | - 18 | 15 | 18 | 11 | 2 At that time we also introduced in-provider networking APIs. The idea was that an NE provider could uses these Objective-C APIs to communicate with its VPN server, and thereby avoiding a bunch of ugly BSD Sockets code. The in-provider networking APIs were limited to NE providers. Specifically, the APIs to construct an in-provider connection were placed on types that were only usable within an NE provider. For example, a packet tunnel provider could create a NWTCPConnection object by calling -createTCPConnectionToEndpoint:enableTLS:TLSParameters:delegate:] and -createTCPConnectionThroughTunnelToEndpoint:enableTLS:TLSParameters:delegate:, which are both methods on NEPacketTunnelProvider. These in-provider networking APIs came with a number of ancillary types, including NWEndpoint and NWPath. At the time we thought that we might promote these in-provider networking APIs to general-purpose networking APIs. That’s why the APIs use the NW prefix. For example, it’s NWTCPConnection, not NETCPConnection. However, plans changed. In iOS 12 Apple shipped Network framework as our recommended general-purpose networking API. This actually includes two APIs: A Swift API that follows Swift conventions, for example, the connection type is called NWConnection A C API that follows C conventions, for example, the connection type is called nw_connection_t These APIs follow similar design patterns to the in-provider networking API, and thus have similar ancillary types. Specifically, there are an NWEndpoint and nw_endpoint_t types, both of which perform a similar role to the NWEndpoint type in the in-provider networking API. This was a source of some confusion in Swift, because the name NWEndpoint could refer to either the Network framework type or the Network Extension framework type, depending on what you’d included. Fortunately you could get around this by qualifying the type as either Network.NWEndpoint or NetworkExtension.NWEndpoint. The arrival of Network framework meant that it no longer made sense to promote the in-provider networking APIs to general-purposes networking APIs. The in-provider networking APIs were on the path to deprecation. However, deprecating these APIs was actually quite tricky. Network Extension framework uses these APIs in a number of interesting ways, and so deprecating them required adding replacements. In addition, we’d needed different replacements for Swift and Objective-C, because Network framework has separate APIs for Swift and C-based languages. In iOS 18 we tackled that problem head on. To continue the NWTCPConnection example above, we replaced: -createTCPConnectionToEndpoint:enableTLS:TLSParameters:delegate:] with nw_connection_t -createTCPConnectionThroughTunnelToEndpoint:enableTLS:TLSParameters:delegate: with nw_connection_t combined with a new virtualInterface property on NEPacketTunnelProvider Of course that’s the Objective-C side of things. In Swift, the replacement is NWConnection rather than nw_connection_t, and the type of the virtualInterface property is NWInterface rather than nw_interface_t. But that’s not the full story. For the two types that use the same name in both frameworks, NWEndpoint and NWPath, we decided to use this opportunity to sort out that confusion. To see how we did that, check out the <NetworkExtension/NetworkExtension.apinotes> file in the SDK. Focusing on NWEndpoint for the moment, you’ll find two entries: … - Name: NWEndpoint SwiftPrivate: true … SwiftVersions: - Version: 5.0 … - Name: NWEndpoint SwiftPrivate: false … The first entry applies when you’re building with the Swift 6 language mode. This marks the type as SwiftPrivate, which means that Swift imports it as __NWEndpoint. That frees up the NWEndpoint name to refer exclusively to the Network framework type. The second entry applies when you’re building with the Swift 5 language mode. It marks the type as not SwiftPrivate. This is a compatible measure to ensure that code written for Swift 5 continues to build. The Advice This sections discusses specific cases in this transition. NWEndpoint and NWPath In Swift 5 language mode, NWEndpoint and NWPath might refer to either framework, depending on what you’ve imported. Add a qualifier if there’s any ambiguity, for example, Network.NWEndpoint or NetworkExtension.NWEndpoint. In Swift 6 language mode, NWEndpoint and NWPath always refer to the Network framework type. Add a __ prefix to get to the Network Extension type. For example, use NWEndpoint for the Network framework type and __NWEndpoint for the Network Extension type. Direct and Through-Tunnel TCP Connections in Swift To create a connection directly, simply create an NWConnection. This support both TCP and UDP, with or without TLS. To create a connection through the tunnel, replace code like this: let c = self.createTCPConnectionThroughTunnel(…) with code like this: let params = NWParameters.tcp params.requiredInterface = self.virtualInterface let c = NWConnection(to: …, using: params) This is for TCP but the same basic process applies to UDP. UDP and App Proxies in Swift If you’re building an app proxy, transparent proxy, or DNS proxy in Swift and need to handle UDP flows using the new API, adopt the NEAppProxyUDPFlowHandling protocol. So, replace code like this: class AppProxyProvider: NEAppProxyProvider { … override func handleNewUDPFlow(_ flow: NEAppProxyUDPFlow, initialRemoteEndpoint remoteEndpoint: NWEndpoint) -> Bool { … } } with this: class AppProxyProvider: NEAppProxyProvider, NEAppProxyUDPFlowHandling { … func handleNewUDPFlow(_ flow: NEAppProxyUDPFlow, initialRemoteFlowEndpoint remoteEndpoint: NWEndpoint) -> Bool { … } } Creating a Network Rule To create an NWHostEndpoint, replace code like this: let ep = NWHostEndpoint(hostname: "1.2.3.4", port: "12345") let r = NENetworkRule(destinationHost: ep, protocol: .TCP) with this: let ep = NWEndpoint.hostPort(host: "1.2.3.4", port: 12345) let r = NENetworkRule(destinationHostEndpoint: ep, protocol: .TCP) Note how the first label of the initialiser has changed from destinationHost to destinationHostEndpoint.
0
0
233
Jul ’25
WiFi 6 MIMO and spatial audio support for CarPlay
On "Accessory Interface Specification CarPlay Addendum R10", it says that it is recommended that the accessory uses a MIMO (2x2) hardware configuration, does this imply that WiFi 5 and SISO (1X1) will be phased out in the near future? When will WiFi 6 MIMO (2x2) become mandatory? On "Accessory Interface Specification CarPlay Addendum R10", it says that Spatial Audio is mandatory. However, for aftermarket in-vehicle infotainment (IVI) system due to the number of speakers are less than 6, is it allowed not to support spatial audio for this type of aftermarket IVI system?
0
0
83
Jul ’25
On Host Names
For important background information, read Extra-ordinary Networking before reading this. Share and Enjoy — Quinn “The Eskimo!” @ Developer Technical Support @ Apple let myEmail = "eskimo" + "1" + "@" + "apple.com" On Host Names I commonly see questions like How do I get the device’s host name? This question doesn’t make sense without more context. Apple systems have a variety of things that you might consider to be the host name: The user-assigned device name — This is a user-visible value, for example, Guy Smiley. People set this in Settings > General > About > Name. The local host name — This is a DNS name used by Bonjour, for example, guy-smiley.local. By default this is algorithmically derived from the user-assigned device name. On macOS, people can override this in Settings > General > Sharing > Local hostname. The reverse DNS name associated with the various IP addresses assigned to the device’s various network interfaces That last one is pretty much useless. You can’t get a single host name because there isn’t a single IP address. For more on that, see Don’t Try to Get the Device’s IP Address. The other two have well-defined answers, although those answers vary by platform. I’ll talk more about that below. Before getting to that, however, let’s look at the big picture. Big Picture The use cases for the user-assigned device name are pretty clear. I rarely see folks confused about that. Another use case for this stuff is that you’ve started a server and you want to tell the user how to connect to it. I discuss this in detail in Showing Connection Information in an iOS Server. However, most folks who run into problems like this do so because they’re suffering from one of the following misconceptions: The device has a DNS name. Its DNS name is unique. Its DNS name doesn’t change. Its DNS name is in some way useful for networking. Some of these may be true in some specific circumstances, but none of them are true in all circumstances. These issues are not unique to Apple platforms — if you look at the Posix spec for gethostname, it says nothing about DNS! — but folks tend to notice these problems more on Apple platforms because Apple devices are often deployed to highly dynamic network environments. So, before you start using the APIs discussed in this post, think carefully about your assumptions. And if you actually do want to work with DNS, there are two cases to consider: If you’re looking for the local host name, use the APIs discussed above. In other cases, it’s likely that the APIs in this post will not be helpful and you’d be better off focusing on DNS APIs [1]. [1] The API I recommend for this is DNS-SD. See the DNS section in TN3151 Choosing the right networking API. macOS To get the user-assigned device name, call the SCDynamicStoreCopyComputerName(_:_:) function. For example: let userAssignedDeviceName = SCDynamicStoreCopyComputerName(nil, nil) as String? To get the local host name, call the SCDynamicStoreCopyLocalHostName(_:) function. For example: let localHostName = SCDynamicStoreCopyLocalHostName(nil) as String? IMPORTANT This returns just the name label. To form a local host name, append .local.. Both routines return an optional result; code defensively! If you’re displaying these values to the user, use the System Configuration framework dynamic store notification mechanism to keep your UI up to date. iOS and Friends On iOS, iPadOS, tvOS, and visionOS, get the user-assigned device name from the name property on UIDevice. IMPORTANT Access to this is now restricted. For more on that, see the documentation for the com.apple.developer.device-information.user-assigned-device-name entitlement. There is no direct mechanism to get the local host name. Other APIs There are a wide variety of other APIs that purport to return the host name. These include: gethostname The name property on NSHost [1] The hostName property on NSProcessInfo (ProcessInfo in Swift) These are problematic for a number of reasons: They have a complex implementation that makes it hard to predict what value you’ll get back. They might end up trying to infer the host name from the network environment. The existing behaviour is hard to change due to compatibility concerns. Some of them are marked as to-be-deprecated. IMPORTANT The second issue is particularly problematic, because it involves synchronous DNS requests [2]. That’s slow in general. Worse yet, if the network environment is restricted in some way, these calls can be very slow, taking about 30 seconds to time out. Given these problems, it’s generally best to avoid calling these routines at all. [1] It also has a names property, which is a little closer to reality but still not particularly useful. [2] Actually, that’s not true for gethostname. Rather, that call just returns whatever was last set by sethostname. This is always fast. The System Configuration framework infrastructure calls sethostname to update the host name as the system state changes.
0
0
209
Mar ’25
A Peek Behind the NECP Curtain
From time to time the subject of NECP grows up, both here on DevForums and in DTS cases. I’ve posted about this before but I wanted to collect those tidbits into single coherent post. If you have questions or comments, start a new thread in the App & System Services > Networking subtopic and tag it with Network Extension. That way I’ll be sure to see it go by. Share and Enjoy — Quinn “The Eskimo!” @ Developer Technical Support @ Apple let myEmail = "eskimo" + "1" + "@" + "apple.com" A Peek Behind the NECP Curtain NECP stands for Network Extension Control Protocol. It’s a subsystem within the Apple networking stack that controls which programs have access to which network interfaces. It’s vitally important to the Network Extension subsystem, hence the name, but it’s used in many different places. Indeed, a very familiar example of its use is the Settings > Mobile Data [1] user interface on iOS. NECP has no explicit API, although there are APIs that are offer some insight into its state. Continuing the Settings > Mobile Data example above, there is a little-known API, CTCellularData in the Core Telephony framework, that returns whether your app has access to WWAN. Despite having no API, NECP is still relevant to developers. The Settings > Mobile Data example is one place where it affects app developers but it’s most important for Network Extension (NE) developers. A key use case for NECP is to prevent VPN loops. When starting an NE provider, the system configures the NECP policy for the NE provider’s process to prevent it from using a VPN interface. This means that you can safely open a network connection inside your VPN provider without having to worry about its traffic being accidentally routed back to you. This is why, for example, an NE packet tunnel provider can use any networking API it wants, including BSD Sockets, to run its connection without fear of creating a VPN loop [1]. One place that NECP shows up regularly is the system log. Next time you see a system log entry like this: type: debug time: 15:02:54.817903+0000 process: Mail subsystem: com.apple.network category: connection message: nw_protocol_socket_set_necp_attributes [C723.1.1:1] setsockopt 39 SO_NECP_ATTRIBUTES … you’ll at least know what the necp means (-: Finally, a lot of NECP infrastructure is in the Darwin open source. As with all things in Darwin, it’s fine to poke around and see how your favourite feature works, but do not incorporate any information you find into your product. Stuff you uncover by looking in Darwin is not considered API. [1] Settings > Cellular Data if you speak American (-: [2] Network Extension providers can call the createTCPConnection(to:enableTLS:tlsParameters:delegate:) method to create an NWTCPConnection [3] that doesn’t run through the tunnel. You can use that if it’s convenient but you don’t need to use it. [3] NWTCPConnection is now deprecated, but there are non-deprecated equivalents. For the full story, see NWEndpoint History and Advice. Revision History 2025-12-12 Replaced “macOS networking stack” with “Apple networking stack” to avoid giving the impression that this is all about macOS. Added a link to NWEndpoint History and Advice. Made other minor editorial changes. 2023-02-27 First posted.
0
0
2.5k
Dec ’25
Extra-ordinary Networking
Most apps perform ordinary network operations, like fetching an HTTP resource with URLSession and opening a TCP connection to a mail server with Network framework. These operations are not without their challenges, but they’re the well-trodden path. If your app performs ordinary networking, see TN3151 Choosing the right networking API for recommendations as to where to start. Some apps have extra-ordinary networking requirements. For example, apps that: Help the user configure a Wi-Fi accessory Require a connection to run over a specific interface Listen for incoming connections Building such an app is tricky because: Networking is hard in general. Apple devices support very dynamic networking, and your app has to work well in whatever environment it’s running in. Documentation for the APIs you need is tucked away in man pages and doc comments. In many cases you have to assemble these APIs in creative ways. If you’re developing an app with extra-ordinary networking requirements, this post is for you. Note If you have questions or comments about any of the topics discussed here, put them in a new thread here on DevForums. Make sure I see it by putting it in the App & System Services > Networking area. And feel free to add tags appropriate to the specific technology you’re using, like Foundation, CFNetwork, Network, or Network Extension. Links, Links, and More Links Each topic is covered in a separate post: The iOS Wi-Fi Lifecycle describes how iOS joins and leaves Wi-Fi networks. Understanding this is especially important if you’re building an app that works with a Wi-Fi accessory. Network Interface Concepts explains how Apple platforms manage network interfaces. If you’ve got this far, you definitely want to read this. Network Interface Techniques offers a high-level overview of some of the more common techniques you need when working with network interfaces. Network Interface APIs describes APIs and core techniques for working with network interfaces. It’s referenced by many other posts. Running an HTTP Request over WWAN explains why most apps should not force an HTTP request to run over WWAN, what they should do instead, and what to do if you really need that behaviour. If you’re building an iOS app with an embedded network server, see Showing Connection Information in an iOS Server for details on how to get the information to show to your user so they can connect to your server. Many folks run into trouble when they try to find the device’s IP address, or other seemingly simple things, like the name of the Wi-Fi interface. Don’t Try to Get the Device’s IP Address explains why these problems are hard, and offers alternative approaches that function correctly in all network environments. Similarly, folks also run into trouble when trying to get the host name. On Host Names explains why that’s more complex than you might think. If you’re working with broadcasts or multicasts, see Broadcasts and Multicasts, Hints and Tips. If you’re building an app that works with a Wi-Fi accessory, see Working with a Wi-Fi Accessory. If you’re trying to gather network interface statistics, see Network Interface Statistics. There are also some posts that are not part of this series but likely to be of interest if you’re working in this space: TN3179 Understanding local network privacy discusses the local network privacy feature. Calling BSD Sockets from Swift does what it says on the tin, that is, explains how to call BSD Sockets from Swift. When doing weird things with the network, you often find yourself having to use BSD Sockets, and that API is not easy to call from Swift. The code therein is primarily for the benefit of test projects, oh, and DevForums posts like these. TN3111 iOS Wi-Fi API overview is a critical resource if you’re doing Wi-Fi specific stuff on iOS. TLS For Accessory Developers tackles the tricky topic of how to communicate securely with a network-based accessory. A Peek Behind the NECP Curtain discusses NECP, a subsystem that control which programs have access to which network interfaces. Networking Resources has links to many other useful resources. Share and Enjoy — Quinn “The Eskimo!” @ Developer Technical Support @ Apple let myEmail = "eskimo" + "1" + "@" + "apple.com" Revision History 2025-07-31 Added a link to A Peek Behind the NECP Curtain. 2025-03-28 Added a link to On Host Names. 2025-01-16 Added a link to Broadcasts and Multicasts, Hints and Tips. Updated the local network privacy link to point to TN3179. Made other minor editorial changes. 2024-04-30 Added a link to Network Interface Statistics. 2023-09-14 Added a link to TLS For Accessory Developers. 2023-07-23 First posted.
0
0
5.6k
Jul ’25
Network Relay errors out with "Privacy proxy failed with error 53"
I'm using NERelayManager to set Relay configuration which all works perfectly fine. I then do a curl with the included domain and while I see QUIC connection succeeds with relay server and H3 request goes to the server, the connection gets abruptly closed by the client with "Software caused connection abort". Console has this information: default 09:43:04.459517-0700 curl nw_flow_connected [C1.1.1 192.168.4.197:4433 in_progress socket-flow (satisfied (Path is satisfied), viable, interface: en0[802.11], ipv4, ipv6, dns, uses wifi)] Transport protocol connected (quic) default 09:43:04.459901-0700 curl [C1.1.1 192.168.4.197:4433 in_progress socket-flow (satisfied (Path is satisfied), viable, interface: en0[802.11], ipv4, ipv6, dns, uses wifi)] event: flow:finish_transport @0.131s default 09:43:04.460745-0700 curl nw_flow_connected [C1.1.1 192.168.4.197:4433 in_progress socket-flow (satisfied (Path is satisfied), viable, interface: en0[802.11], ipv4, ipv6, dns, uses wifi)] Joined protocol connected (http3) default 09:43:04.461049-0700 curl [C1.1.1 192.168.4.197:4433 in_progress socket-flow (satisfied (Path is satisfied), viable, interface: en0[802.11], ipv4, ipv6, dns, uses wifi)] event: flow:finish_transport @0.133s default 09:43:04.465115-0700 curl [C2 E47A3A0C-7275-4F6B-AEDF-59077ABAE34B 192.168.4.197:4433 quic, multipath service: 1, tls, definite, attribution: developer] cancel default 09:43:04.465238-0700 curl [C2 E47A3A0C-7275-4F6B-AEDF-59077ABAE34B 192.168.4.197:4433 quic, multipath service: 1, tls, definite, attribution: developer] cancelled [C2 FCB1CFD1-4BF9-4E37-810E-81265D141087 192.168.4.139:53898<->192.168.4.197:4433] Connected Path: satisfied (Path is satisfied), viable, interface: en0[802.11], ipv4, ipv6, dns, uses wifi Duration: 0.121s, QUIC @0.000s took 0.000s, TLS 1.3 took 0.111s bytes in/out: 2880/4322, packets in/out: 4/8, rtt: 0.074s, retransmitted bytes: 0, out-of-order bytes: 0 ecn packets sent/acked/marked/lost: 3/1/0/0 default 09:43:04.465975-0700 curl nw_flow_disconnected [C2 192.168.4.197:4433 cancelled multipath-socket-flow ((null))] Output protocol disconnected default 09:43:04.469189-0700 curl nw_endpoint_proxy_receive_report [C1.1 IPv4#124bdc4d:80 in_progress proxy (satisfied (Path is satisfied), interface: en0[802.11], ipv4, ipv6, dns, proxy, uses wifi)] Privacy proxy failed with error 53 ([C1.1.1] masque Proxy: http://192.168.4.197:4433) default 09:43:04.469289-0700 curl [C1.1.1 192.168.4.197:4433 failed socket-flow (satisfied (Path is satisfied), viable, interface: en0[802.11], ipv4, ipv6, dns, uses wifi)] event: flow:failed_connect @0.141s, error Software caused connection abort Relay server otherwise works fine with our QUIC MASQUE clients but not with built-in macOS MASQUE client. Anything I'm missing?
0
0
168
May ’25
iOS 26 Crash: _xzm_xzone_malloc_freelist_outlined in com.apple.network.connections
Hello Apple Support Team, We are seeing a production crash on iOS 26 devices that appears to originate from Apple system frameworks rather than application code. Crash Summary Crash signature: _xzm_xzone_malloc_freelist_outlined Crashed thread: com.apple.network.connections Frameworks involved: CFNetwork, Security, libdispatch, libsystem_malloc Affected OS: iOS 26.x App built with: Xcode 16 Devices: Multiple models (not device-specific) Reproducibility: Intermittent, higher frequency during app launch / background networking Observed Stack Trace (top frames) _xzm_xzone_malloc_freelist_outlined dispatch_data_create_alloc xpc_data_deserialize SecTrustEvaluateIfNecessary CFNetwork HTTPProtocol / HTTP3Connection com.apple.network.connections App Context The app uses URLSession for networking. Multiple third-party SDKs are integrated (Firebase Analytics, Dynatrace, Appsflyer, and similar analytics/monitoring SDKs). These SDKs perform concurrent background network requests, especially during app launch and foreground transitions. No unsafe memory operations (manual malloc/free, unsafe pointers, or custom networking stacks) are used in the app code. Key Observations The crash is predominantly observed on iOS 26 and not on earlier iOS versions. Stack traces do not include application symbols. Disabling or delaying analytics SDK initialization significantly reduces the crash rate. Reducing concurrent network requests and limiting HTTP/3 usage also mitigates the issue. This suggests a potential regression in CFNetwork / Network.framework / HTTP/3 handling combined with the new memory allocator (xzone) on iOS 26. Impact Random app termination during background networking. Occurs without a clear deterministic repro path, making it difficult to fully mitigate at the app level. Request Could you please help investigate whether this is a known iOS 26 issue related to: HTTP/3 / QUIC networking XPC deserialization Memory allocation in the new xzone allocator High-concurrency network requests We would appreciate guidance on: Recommended mitigations Whether this issue is already tracked internally Any best practices for apps integrating multiple analytics SDKs on iOS 26 Crash logs and additional diagnostics can be provided if needed. Thank you for your support. Best regards, Dhananjay
0
0
31
1d
How to test application using Thread networking on MacOS?
I would like to test running some Thread Networking code on my MacOS machine: import ThreadNetwork let client = THClient() let bIsPreferredAvailable = await client.isPreferredAvailable() but I get some errors when trying to create an instance of the THClient class: Client: -[THClient connectToXPCService]_block_invoke - CTCS XPC Client is interrupted. Client: -[THClient getConnectionEntitlementValidity]_block_invoke - clientProxyWithErrorHandler Error: Error Domain=NSCocoaErrorDomain Code=4097 "connection to service named com.apple.ThreadNetwork.xpc" UserInfo={NSDebugDescription=connection to service named com.apple.ThreadNetwork.xpc} Client: -[THClient init] - XPC Client Init Failed Invalidating XPC connection. Client: -[THClient getConnectionEntitlementValidity]_block_invoke - clientProxyWithErrorHandler Error: Error Domain=NSCocoaErrorDomain Code=4097 "connection to service named com.apple.ThreadNetwork.xpc" UserInfo={NSDebugDescription=connection to service named com.apple.ThreadNetwork.xpc} How can I get the code to run?
0
0
255
Mar ’25
Network Extension Provider Packaging
This is a topic that’s come up a few times on the forums, so I thought I’d write up a summary of the issues I’m aware of. If you have questions or comments, start a new thread in the App & System Services > Networking subtopic and tag it with Network Extension. That way I’ll be sure to see it go by. Share and Enjoy — Quinn “The Eskimo!” @ Developer Technical Support @ Apple let myEmail = "eskimo" + "1" + "@" + "apple.com" Network Extension Provider Packaging There are two ways to package a network extension provider: App extension ( appex ) System extension ( sysex ) Different provider types support different packaging on different platforms. See TN3134 Network Extension provider deployment for the details. Some providers, most notably packet tunnel providers on macOS, support both appex and sysex packaging. Sysex packaging has a number of advantages: It supports direct distribution, using Developer ID signing. It better matches the networking stack on macOS. An appex is tied to the logged in user, whereas a sysex, and the networking stack itself, is global to the system as a whole. Given that, it generally makes sense to package your Network Extension (NE) provider as a sysex on macOS. If you’re creating a new product that’s fine, but if you have an existing iOS product that you want to bring to macOS, you have to account for the differences brought on by the move to sysex packaging. Similarly, if you have an existing sysex product on macOS that you want to bring to iOS, you have to account for the appex packaging. This post summarises those changes. Keep the following in mind while reading this post: The information here applies to all NE providers that can be packaged as either an appex or a sysex. When this post uses a specific provider type in an example, it’s just an example. Unless otherwise noted, any information about iOS also applies to iPadOS, tvOS, and visionOS. Process Lifecycle With appex packaging, the system typically starts a new process for each instance of your NE provider. For example, with a packet tunnel provider: When the users starts the VPN, the system creates a process and then instantiates and starts the NE provider in that process. When the user stops the VPN, the system stops the NE provider and then terminates the process running it. If the user starts the VPN again, the system creates an entirely new process and instantiates and starts the NE provider in that. In contrast, with sysex packaging there’s typically a single process that runs all off the sysex’s NE providers. Returning to the packet tunnel provider example: When the users starts the VPN, the system instantiates and starts the NE provider in the sysex process. When the user stops the VPN, the system stops and deallocates the NE provider instances, but leaves the sysex process running. If the user starts the VPN again, the system instantiates and starts a new instances of the NE provider in the sysex process. This lifecycle reflects how the system runs the NE provider, which in turn has important consequences on what the NE provider can do: An appex acts like a launchd agent [1], in that it runs in a user context and has access to that user’s state. A sysex is effectively a launchd daemon. It runs in a context that’s global to the system as a whole. It does not have access to any single user’s state. Indeed, there might be no user logged in, or multiple users logged in. The following sections explore some consequences of the NE provider lifecycle. [1] It’s not actually run as a launchd agent. Rather, there’s a system launchd agent that acts as the host for the app extension. App Groups With an app extension, the app extension and its container app run as the same user. Thus it’s trivial to share state between them using an app group container. Note When talking about extensions on Apple platforms, the container app is the app in which the extension is embedded and the host app is the app using the extension. For network extensions the host app is the system itself. That’s not the case with a system extension. The system extension runs as root whereas the container app runs an the user who launched it. While both programs can claim access to the same app group, the app group container location they receive will be different. For the system extension that location will be inside the home directory for the root user. For the container app the location will be inside the home directory of the user who launched it. This does not mean that app groups are useless in a Network Extension app. App groups are also a factor in communicating between the container app and its extensions, the subject of the next section. IMPORTANT App groups have a long and complex history on macOS. For the full story, see App Groups: macOS vs iOS: Working Towards Harmony. Communicating with Extensions With an app extension there are two communication options: App-provider messages App groups App-provider messages are supported by NE directly. In the container app, send a message to the provider by calling sendProviderMessage(_:responseHandler:) method. In the appex, receive that message by overriding the handleAppMessage(_:completionHandler:) method. An appex can also implement inter-process communication (IPC) using various system IPC primitives. Both the container app and the appex claim access to the app group via the com.apple.security.application-groups entitlement. They can then set up IPC using various APIs, as explain in the documentation for that entitlement. With a system extension the story is very different. App-provider messages are supported, but they are rarely used. Rather, most products use XPC for their communication. In the sysex, publish a named XPC endpoint by setting the NEMachServiceName property in its Info.plist. Listen for XPC connections on that endpoint using the XPC API of your choice. Note For more information about the available XPC APIs, see XPC Resources. In the container app, connect to that named XPC endpoint using the XPC Mach service name API. For example, with NSXPCConnection, initialise the connection with init(machServiceName:options:), passing in the string from NEMachServiceName. To maximise security, set the .privileged flag. Note XPC Resources has a link to a post that explains why this flag is important. If the container app is sandboxed — necessary if you ship on the Mac App Store — then the endpoint name must be prefixed by an app group ID that’s accessible to that app, lest the App Sandbox deny the connection. See the app groups documentation for the specifics. When implementing an XPC listener in your sysex, keep in mind that: Your sysex’s named XPC endpoint is registered in the global namespace. Any process on the system can open a connection to it [1]. Your XPC listener must be prepared for this. If you want to restrict connections to just your container app, see XPC Resources for a link to a post that explains how to do that. Even if you restrict access in that way, it’s still possible for multiple instances of your container app to be running simultaneously, each with its own connection to your sysex. This happens, for example, if there are multiple GUI users logged in and different users run your container app. Design your XPC protocol with this in mind. Your sysex only gets one named XPC endpoint, and thus one XPC listener. If your sysex includes multiple NE providers, take that into account when you design your XPC protocol. [1] Assuming that connection isn’t blocked by some other mechanism, like the App Sandbox. Inter-provider Communication A sysex can include multiple types of NE providers. For example, a single sysex might include a content filter and a DNS proxy provider. In that case the system instantiates all of the NE providers in the same sysex process. These instances can communicate without using IPC, for example, by storing shared state in global variables (with suitable locking, of course). It’s also possible for a single container app to contain multiple sysexen, each including a single NE provider. In that case the system instantiates the NE providers in separate processes, one for each sysex. If these providers need to communicate, they have to use IPC. In the appex case, the system instantiates each provider in its own process. If two providers need to communicate, they have to use IPC. Managing Secrets An appex runs in a user context and thus can store secrets, like VPN credentials, in the keychain. On macOS this includes both the data protection keychain and the file-based keychain. It can also use a keychain access group to share secrets with its container app. See Sharing access to keychain items among a collection of apps. Note If you’re not familiar with the different types of keychain available on macOS, see TN3137 On Mac keychain APIs and implementations. A sysex runs in the global context and thus doesn’t have access to user state. It also doesn’t have access to the data protection keychain. It must use the file-based keychain, and specifically the System keychain. That means there’s no good way to share secrets with the container app. Instead, do all your keychain operations in the sysex. If the container app needs to work with a secret, have it pass that request to the sysex via IPC. For example, if the user wants to use a digital identity as a VPN credential, have the container app get the PKCS#12 data and password and then pass that to the sysex so that it can import the digital identity into the keychain. Memory Limits iOS imposes strict memory limits an NE provider appexen [1]. macOS imposes no memory limits on NE provider appexen or sysexen. [1] While these limits are not documented officially, you can get a rough handle on the current limits by reading the posts in this thread. Frameworks If you want to share code between a Mac app and its embedded appex, use a structure like this: MyApp.app/ Contents/ MacOS/ MyApp PlugIns/ MyExtension.appex/ Contents/ MacOS/ MyExtension … Frameworks/ MyFramework.framework/ … There’s one copy of the framework, in the app’s Frameworks directory, and both the app and the appex reference it. This approach works for an appex because the system always loads the appex from your app’s bundle. It does not work for a sysex. When you activate a sysex, the system copies it to a protected location. If that sysex references a framework in its container app, it will fail to start because that framework isn’t copied along with the sysex. The solution is to structure your app like this: MyApp.app/ Contents/ MacOS/ MyApp Library/ SystemExtensions/ MyExtension.systemextension/ Contents/ MacOS/ MyExtension Frameworks/ MyFramework.framework/ … … That is, have both the app and the sysex load the framework from the sysex’s Frameworks directory. When the system copies the sysex to its protected location, it’ll also copy the framework, allowing the sysex to load it. To make this work you have to change the default rpath configuration set up by Xcode. Read Dynamic Library Standard Setup for Apps to learn how that works and then tweak things so that: The framework is embedded in the sysex, not the container app. The container app has an additional LC_RPATH load command for the sysex’s Frameworks directory (@executable_path/../Library/SystemExtensions/MyExtension.systemextension/Contents/Frameworks). The sysex’s LC_RPATH load command doesn’t reference the container app’s Frameworks directory (@executable_path/../../../../Frameworks) but instead points to the sysex’s Framweorks directory (@executable_path/../Frameworks). Entitlements When you build an app with an embedded NE extension, both the app and the extension must be signed with the com.apple.developer.networking.networkextension entitlement. This is a restricted entitlement, that is, it must be authorised by a provisioning profile. The value of this entitlement is an array, and the values in that array differ depend on your distribution channel: If you distribute your app directly with Developer ID signing, use the values with the -systemextension suffix. Otherwise — including when you distribute the app on the App Store and when signing for development — use the values without that suffix. Make sure you authorise these values with your provisioning profile. If, for example, you use an App Store distribution profile with a Developer ID signed app, things won’t work because the profile doesn’t authorise the right values. In general, the easiest option is to use Xcode’s automatic code signing. However, watch out for the pitfall described in Exporting a Developer ID Network Extension. Revision History 2025-11-06 Added the Entitlements section. Explained that, with sysex packaging, multiple instances of your container app might connect simultaneously with your sysex. 2025-09-17 First posted.
0
0
147
Nov ’25
Flow Divert behavior
Hello, Our app uses Network Extension / Packet Tunnel Provider to establish VPN connections on macOS and iOS. We have observed that after creating a utun device and adding any IPv4 routes (NEPacketTunnelNetworkSettings.IPv4Settings), the OS automatically adds several host routes via utun to services such as Akamai, Apple Push, etc. These routes appear to correspond to TCP flows that were active at the moment the VPN connection was established. When a particular TCP flow ends, the corresponding host route is deleted. We understand this is likely intended to avoid breaking existing TCP connections. However, we find the behavior of migrating existing TCP flows to the new utun interface simply because any IPv4 route is added somewhat questionable. This approach would make sense in a "full-tunnel" scenario — for example, when all IPv4 traffic (e.g., 0.0.0.0/0) is routed through the tunnel — but not necessarily in a "split-tunnel" configuration where only specific IPv4 routes are added. Is there any way to control or influence this behavior? Would it be possible for FlowDivert to differentiate between full-tunnel and split-tunnel cases, and only preserve existing TCP flows via utun in the full-tunnel scenario? Thank you.
0
0
108
Apr ’25
Working with a Wi-Fi Accessory
For important background information, read Extra-ordinary Networking before reading this. Share and Enjoy — Quinn “The Eskimo!” @ Developer Technical Support @ Apple let myEmail = "eskimo" + "1" + "@" + "apple.com" Working with a Wi-Fi Accessory Building an app that works with a Wi-Fi accessory presents specific challenges. This post discusses those challenges and some recommendations for how to address them. Note While my focus here is iOS, much of the info in this post applies to all Apple platforms. IMPORTANT iOS 18 introduced AccessorySetupKit, a framework to simplify the discovery and configuration of an accessory. I’m not fully up to speed on that framework myself, but I encourage you to watch WWDC 2024 Session 10203 Meet AccessorySetupKit and read the framework documentation. IMPORTANT iOS 26 introduced WiFiAware, a framework for setting up communication with Wi-Fi Aware accessories. Wi-Fi Aware is an industry standard to securely discover, pair, and communicate with nearby devices. This is especially useful for stand-alone accessories (defined below). For more on this framework, watch WWDC 2025 Session 228 Supercharge device connectivity with Wi-Fi Aware and read the framework documentation. For information on how to create a Wi-Fi Aware accessory that works with iPhone, go to Developer > Accessories, download Accessory Design Guidelines for Apple Devices, and review the Wi-Fi Aware chapter. Accessory Categories I classify Wi-Fi accessories into three different categories. A bound accessory is ultimately intended to join the user’s Wi-Fi network. It may publish its own Wi-Fi network during the setup process, but the goal of that process is to get the accessory on to the existing network. Once that’s done, your app interacts with the accessory using ordinary networking APIs. An example of a bound accessory is a Wi-Fi capable printer. A stand-alone accessory publishes a Wi-Fi network at all times. An iOS device joins that network so that your app can interact with it. The accessory never provides access to the wider Internet. An example of a stand-alone accessory is a video camera that users take with them into the field. You might want to write an app that joins the camera’s network and downloads footage from it. A gateway accessory is one that publishes a Wi-Fi network that provides access to the wider Internet. Your app might need to interact with the accessory during the setup process, but after that it’s useful as is. An example of this is a Wi-Fi to WWAN gateway. Not all accessories fall neatly into these categories. Indeed, some accessories might fit into multiple categories, or transition between categories. Still, I’ve found these categories to be helpful when discussing various accessory integration challenges. Do You Control the Firmware? The key question here is Do you control the accessory’s firmware? If so, you have a bunch of extra options that will make your life easier. If not, you have to adapt to whatever the accessory’s current firmware does. Simple Improvements If you do control the firmware, I strongly encourage you to: Support IPv6 Implement Bonjour [1] These two things are quite easy to do — most embedded platforms support them directly, so it’s just a question of turning them on — and they will make your life significantly easier: Link-local addresses are intrinsic to IPv6, and IPv6 is intrinsic to Apple platforms. If your accessory supports IPv6, you’ll always be able to communicate with it, regardless of how messed up the IPv4 configuration gets. Similarly, if you support Bonjour, you’ll always be able to find your accessory on the network. [1] Bonjour is an Apple term for three Internet standards: RFC 3927 Dynamic Configuration of IPv4 Link-Local Addresses RFC 6762 Multicast DNS RFC 6763 DNS-Based Service Discovery WAC For a bound accessory, support Wireless Accessory Configuration (WAC). This is a relatively big ask — supporting WAC requires you to join the MFi Program — but it has some huge benefits: You don’t need to write an app to configure your accessory. The user will be able to do it directly from Settings. If you do write an app, you can use the EAWiFiUnconfiguredAccessoryBrowser class to simplify your configuration process. HomeKit For a bound accessory that works in the user’s home, consider supporting HomeKit. This yields the same onboarding benefits as WAC, and many other benefits as well. Also, you can get started with the HomeKit Open Source Accessory Development Kit (ADK). Bluetooth LE If your accessory supports Bluetooth LE, think about how you can use that to improve your app’s user experience. For an example of that, see SSID Scanning, below. Claiming the Default Route, Or Not? If your accessory publishes a Wi-Fi network, a key design decision is whether to stand up enough infrastructure for an iOS device to make it the default route. IMPORTANT To learn more about how iOS makes the decision to switch the default route, see The iOS Wi-Fi Lifecycle and Network Interface Concepts. This decision has significant implications. If the accessory’s network becomes the default route, most network connections from iOS will be routed to your accessory. If it doesn’t provide a path to the wider Internet, those connections will fail. That includes connections made by your own app. Note It’s possible to get around this by forcing your network connections to run over WWAN. See Binding to an Interface in Network Interface Techniques and Running an HTTP Request over WWAN. Of course, this only works if the user has WWAN. It won’t help most iPad users, for example. OTOH, if your accessory’s network doesn’t become the default route, you’ll see other issues. iOS will not auto-join such a network so, if the user locks their device, they’ll have to manually join the network again. In my experience a lot of accessories choose to become the default route in situations where they shouldn’t. For example, a bound accessory is never going to be able to provide a path to the wider Internet so it probably shouldn’t become the default route. However, there are cases where it absolutely makes sense, the most obvious being that of a gateway accessory. Acting as a Captive Network, or Not? If your accessory becomes the default route you must then decide whether to act like a captive network or not. IMPORTANT To learn more about how iOS determines whether a network is captive, see The iOS Wi-Fi Lifecycle. For bound and stand-alone accessories, becoming a captive network is generally a bad idea. When the user joins your network, the captive network UI comes up and they have to successfully complete it to stay on the network. If they cancel out, iOS will leave the network. That makes it hard for the user to run your app while their iOS device is on your accessory’s network. In contrast, it’s more reasonable for a gateway accessory to act as a captive network. SSID Scanning Many developers think that TN3111 iOS Wi-Fi API overview is lying when it says: iOS does not have a general-purpose API for Wi-Fi scanning It is not. Many developers think that the Hotspot Helper API is a panacea that will fix all their Wi-Fi accessory integration issues, if only they could get the entitlement to use it. It will not. Note this comment in the official docs: NEHotspotHelper is only useful for hotspot integration. There are both technical and business restrictions that prevent it from being used for other tasks, such as accessory integration or Wi-Fi based location. Even if you had the entitlement you would run into these technical restrictions. The API was specifically designed to support hotspot navigation — in this context hotspots are “Wi-Fi networks where the user must interact with the network to gain access to the wider Internet” — and it does not give you access to on-demand real-time Wi-Fi scan results. Many developers look at another developer’s app, see that it’s displaying real-time Wi-Fi scan results, and think there’s some special deal with Apple that’ll make that work. There is not. In reality, Wi-Fi accessory developers have come up with a variety of creative approaches for this, including: If you have a bound accessory, you might add WAC support, which makes this whole issue go away. In many cases, you can avoid the need for Wi-Fi scan results by adopting AccessorySetupKit. You might build your accessory with a barcode containing the info required to join its network, and scan that from your app. This is the premise behind the Configuring a Wi-Fi Accessory to Join the User’s Network sample code. You might configure all your accessories to have a common SSID prefix, and then take advantage of the prefix support in NEHotspotConfigurationManager. See Programmatically Joining a Network, below. You might have your app talk to your accessory via some other means, like Bluetooth LE, and have the accessory scan for Wi-Fi networks and return the results. Programmatically Joining a Network Network Extension framework has an API, NEHotspotConfigurationManager, to programmatically join a network, either temporarily or as a known network that supports auto-join. For the details, see Wi-Fi Configuration. One feature that’s particularly useful is it’s prefix support, allowing you to create a configuration that’ll join any network with a specific prefix. See the init(ssidPrefix:) initialiser for the details. For examples of how to use this API, see: Configuring a Wi-Fi Accessory to Join the User’s Network — It shows all the steps for one approach for getting a non-WAC bound accessory on to the user’s network. NEHotspotConfiguration Sample — Use this to explore the API in general. Secure Communication Users expect all network communication to be done securely. For some ideas on how to set up a secure connection to an accessory, see TLS For Accessory Developers. Revision History 2025-11-05 Added a link to the Accessory Design Guidelines for Apple Devices. 2025-06-19 Added a preliminary discussion of Wi-Fi Aware. 2024-09-12 Improved the discussion of AccessorySetupKit. 2024-07-16 Added a preliminary discussion of AccessorySetupKit. 2023-10-11 Added the HomeKit section. Fixed the link in Secure Communication to point to TLS For Accessory Developers. 2023-07-23 First posted.
0
0
1.8k
Nov ’25
My app attempts to use a socket to establish a connection with my external device, but it fails
My external device can generate a fixed Wi-Fi network. When I connect to this Wi-Fi using my iPhone 17 Pro Max (iOS version 26.0.1), and my app tries to establish a connection using the following method, this method returns -1 int connect(int, const struct sockaddr *, socklen_t) __DARWIN_ALIAS_C(connect); However, when I use other phones, such as iPhone 12, iPhone 8, iPhone 11, etc., to connect to this external device, the above method always returns successfully, with the parameters passed to the method remaining the same. I also tried resetting the network settings on the iPhone 17 Pro Max (iOS version 26.0.1), but it still cannot establish a connection.
0
0
34
Oct ’25
How can implement iOS esim in-app activation
Esim activation. Assuming I already have card data, I use the universal link https://esimsetup.apple.com/esim_qrcode_provisioning?carddata= to install it. However, it always ends up in the system Settings app. The flow: 1. Click the link -&gt; 2. Redirect to Settings -&gt; 3. Show activation dialog. Is there anyway to make the activation flow stay within the app? I couldn't find any documentation for that. This is an example from Revolut app, where the whole flow above happens without leaving the app.
0
1
417
Feb ’25
Broadcasts and Multicasts, Hints and Tips
For important background information, read Extra-ordinary Networking before reading this. Share and Enjoy — Quinn “The Eskimo!” @ Developer Technical Support @ Apple let myEmail = "eskimo" + "1" + "@" + "apple.com" Broadcasts and Multicasts, Hints and Tips I regularly see folks struggle with broadcasts and multicasts on Apple platforms. This post is my attempt to clear up some of the confusion. This post covers both IPv4 and IPv6. There is, however, a key difference. In IPv4, broadcasts and multicasts are distinct concepts. In contrast, IPv6 doesn’t support broadcast as such; rather, it treats broadcasts as a special case of multicasts. IPv6 does have an all nodes multicast address, but it’s rarely used. Before reading this post, I suggest you familiarise yourself with IP addresses in general. A good place to start is The Fount of All Knowledge™. Service Discovery A lot of broadcast and multicast questions come from folks implementing their own service discovery protocol. I generally recommend against doing that, for the reasons outlined in the Service Discovery section of Don’t Try to Get the Device’s IP Address. There are, however, some good reasons to implement a custom service discovery protocol. For example, you might be working with an accessory that only supports this custom protocol [1]. If you must implement your own service discovery protocol, read this post and also read the advice in Don’t Try to Get the Device’s IP Address. IMPORTANT Sometimes I see folks implementing their own version of mDNS. This is almost always a mistake: If you’re using third-party tooling that includes its own mDNS implementation, it’s likely that this tooling allows you to disable that implementation and instead rely on the Bonjour support that’s built-in to all Apple platforms. If you’re doing some weird low-level thing with mDNS or DNS-SD, it’s likely that you can do that with the low-level DNS-SD API. [1] And whose firmware you can’t change! I talk more about this in Working with a Wi-Fi Accessory. API Choice Broadcasts and multicasts typically use UDP [1]. TN3151 Choosing the right networking API describes two recommended UDP APIs: Network framework BSD Sockets Our general advice is to prefer Network framework over BSD Sockets, but UDP broadcasts and multicasts are an exception to that rule. Network framework has very limited UDP broadcast support. And while it’s support for UDP multicasts is less limited, it’s still not sufficient for all UDP applications. In cases where Network framework is not sufficient, BSD Sockets is your only option. [1] It is possible to broadcast and multicast at the Ethernet level, but I almost never see questions about that. UDP Broadcasts in Network Framework Historically I’ve claimed that Network framework was useful for UDP broadcasts is very limited circumstances (for example, in the footnote on this post). I’ve since learnt that this isn’t the case. Or, more accurately, this support is so limited (r. 122924701) as to be useless in practice. For the moment, if you want to work with UDP broadcasts, your only option is BSD Sockets. UDP Multicasts in Network Framework Network framework supports UDP multicast using the NWConnectionGroup class with the NWMulticastGroup group descriptor. This support has limits. The most significant limit is that it doesn’t support broadcasts; it’s for multicasts only. Note This only relevant to IPv4. Remember that IPv6 doesn’t support broadcasts as a separate concept. There are other limitations, but I don’t have a good feel for them. I’ll update this post as I encounter issues. Local Network Privacy Some Apple platforms support local network privacy. This impacts broadcasts and multicasts in two ways: Broadcasts and multicasts require local network access, something that’s typically granted by the user. Broadcasts and multicasts are limited by a managed entitlement (except on macOS). TN3179 Understanding local network privacy has lots of additional info on this topic, including the list of platforms to which it applies. Send, Receive, and Interfaces When you broadcast or multicast, there’s a fundamental asymmetry between send and receive: You can reasonable receive datagrams on all broadcast-capable interfaces. But when you send a datagram, it has to target a specific interface. The sending behaviour is the source of many weird problems. Consider the IPv4 case. If you send a directed broadcast, you can reasonably assume it’ll be routed to the correct interface based on the network prefix. But folks commonly send an all-hosts broadcast (255.255.255.255), and it’s not obvious what happens in that case. Note If you’re unfamiliar with the terms directed broadcast and all-hosts broadcast, see IP address. The exact rules for this are complex, vary by platform, and can change over time. For that reason, it’s best to write your broadcast code to be interface specific. That is: Identify the interfaces on which you want to work. Create a socket per interface. Bind that socket to that interface. Note Use the IP_BOUND_IF (IPv4) or IPV6_BOUND_IF (IPv6) socket options rather than binding to the interface address, because the interface address can change over time. Extra-ordinary Networking has links to other posts which discuss these concepts and the specific APIs in more detail. Miscellaneous Gotchas A common cause of mysterious broadcast and multicast problems is folks who hard code BSD interface names, like en0. Doing that might work for the vast majority of users but then fail in some obscure scenarios. BSD interface names are not considered API and you must not hard code them. Extra-ordinary Networking has links to posts that describe how to enumerate the interface list and identify interfaces of a specific type. Don’t assume that there’ll be only one interface of a given type. This might seem obviously true, but it’s not. For example, our platforms support peer-to-peer Wi-Fi, so each device has multiple Wi-Fi interfaces. When sending a broadcast, don’t forget to enable the SO_BROADCAST socket option. If you’re building a sandboxed app on the Mac, working with UDP requires both the com.apple.security.network.client and com.apple.security.network.server entitlements. Some folks reach for broadcasts or multicasts because they’re sending the same content to multiple devices and they believe that it’ll be faster than unicasts. That’s not true in many cases, especially on Wi-Fi. For more on this, see the Broadcasts section of Wi-Fi Fundamentals. Snippets To send a UDP broadcast: func broadcast(message: Data, to interfaceName: String) throws { let fd = try FileDescriptor.socket(AF_INET, SOCK_DGRAM, 0) defer { try! fd.close() } try fd.setSocketOption(SOL_SOCKET, SO_BROADCAST, 1 as CInt) let interfaceIndex = if_nametoindex(interfaceName) guard interfaceIndex > 0 else { throw … } try fd.setSocketOption(IPPROTO_IP, IP_BOUND_IF, interfaceIndex) try fd.send(data: message, to: ("255.255.255.255", 2222)) } Note These snippet uses the helpers from Calling BSD Sockets from Swift. To receive UDP broadcasts: func receiveBroadcasts(from interfaceName: String) throws { let fd = try FileDescriptor.socket(AF_INET, SOCK_DGRAM, 0) defer { try! fd.close() } let interfaceIndex = if_nametoindex(interfaceName) guard interfaceIndex > 0 else { fatalError() } try fd.setSocketOption(IPPROTO_IP, IP_BOUND_IF, interfaceIndex) try fd.setSocketOption(SOL_SOCKET, SO_REUSEADDR, 1 as CInt) try fd.setSocketOption(SOL_SOCKET, SO_REUSEPORT, 1 as CInt) try fd.bind("0.0.0.0", 2222) while true { let (data, (sender, port)) = try fd.receiveFrom() … } } IMPORTANT This code runs synchronously, which is less than ideal. In a real app you’d run the receive asynchronously, for example, using a Dispatch read source. For an example of how to do that, see this post. If you need similar snippets for multicast, lemme know. I’ve got them lurking on my hard disk somewhere (-: Other Resources Apple’s official documentation for BSD Sockets is in the man pages. See Reading UNIX Manual Pages. Of particular interest are: setsockopt man page ip man page ip6 man page If you’re not familiar with BSD Sockets, I strongly recommend that you consult third-party documentation for it. BSD Sockets is one of those APIs that looks simple but, in reality, is ridiculously complicated. That’s especially true if you’re trying to write code that works on BSD-based platforms, like all of Apple’s platforms, and non-BSD-based platforms, like Linux. I specifically recommend UNIX Network Programming, by Stevens et al, but there are lots of good alternatives. https://unpbook.com Revision History 2025-09-01 Fixed a broken link. 2025-01-16 First posted.
0
0
585
Sep ’25