Networking

RSS for tag

Explore the networking protocols and technologies used by the device to connect to Wi-Fi networks, Bluetooth devices, and cellular data services.

Networking Documentation

Posts under Networking subtopic

Post

Replies

Boosts

Views

Activity

About the Relay payload
ios構成プロファイルの制限のallowCloudPrivateRelayのプライベートリレーの制御とRelayペイロードの機能は関係がありますか? それとも別々の機能でしょうか? ↓ s there a relationship between the private relay control in the iOS configuration profile restriction allowCloudPrivateRelay and the functionality of the Relay payload? Or are they separate features?
0
0
24
Apr ’25
Wi-Fi Aware Paring Flow
Hello, I understand that to discover and pair a device or accessory with Wi-Fi Aware, we can use either the DeviceDiscoveryUI or AccessorySetupKitUI frameworks. During the pairing process, both frameworks prompt the user to enter a pairing code. Is this step mandatory? What alternatives exist for devices or accessories that don't have a way to communicate a pairing code to the user (for example, devices or accessories without a display or voice capability)? Best regards, Gishan
0
0
229
Nov ’25
Accessory Setup Kit (BLE) not showing multiple options nor the advertising name
I'm developing an application using the accessory setup kit (BLE) on iOS 18+. An important aspect of the connection process is being able to find and choose the correct device. I noticed on iOS 18.2 that I was able to both scroll through the discovered accessories as well as view the advertised name. However, after upgrading to 18.7.2, only a single device is viewable and the advertised name is no longer available. Is there a trigger for this feature that I need to enable or was this "multiple discovery" feature removed? If so, why?
0
1
153
Oct ’25
NSURLSession’s Resume Rate Limiter
IMPORTANT The resume rate limiter is now covered by the official documentation. See Use background sessions efficiently within Downloading files in the background. So, the following is here purely for historical perspective. NSURLSession’s background session support on iOS includes a resume rate limiter. This limiter exists to prevent apps from abusing the background session support in order to run continuously in the background. It works as follows: nsurlsessiond (the daemon that does all the background session work) maintains a delay value for your app. It doubles that delay every time it resumes (or relaunches) your app. It resets that delay to 0 when the user brings your app to the front. It also resets the delay to 0 if the delay period elapses without it having resumed your app. When your app creates a new task while it is in the background, the task does not start until that delay has expired. To understand the impact of this, consider what happens when you download 10 resources. If you pass them to the background session all at once, you see something like this: Your app creates tasks 1 through 10 in the background session. nsurlsessiond starts working on the first few tasks. As tasks complete, nsurlsessiond starts working on subsequent ones. Eventually all the tasks complete and nsurlsessiond resumes your app. Now consider what happens if you only schedule one task at a time: Your app creates task 1. nsurlsessiond starts working on it. When it completes, nsurlsessiond resumes your app. Your app creates task 2. nsurlsessiond delays the start of task 2 a little bit. nsurlsessiond starts working on task 2. When it completes, nsurlsessiond resumes your app. Your app creates task 3. nsurlsessiond delays the start of task 3 by double the previous amount. nsurlsessiond starts working on task 3. When it completes, nsurlsessiond resumes your app. Steps 8 through 11 repeat, and each time the delay doubles. Eventually the delay gets so large that it looks like your app has stopped making progress. If you have a lot of tasks to run then you can mitigate this problem by starting tasks in batches. That is, rather than start just one task in step 1, you would start 100. This only helps up to a point. If you have thousands of tasks to run, you will eventually start seeing serious delays. In that case it’s much better to change your design to use fewer, larger transfers. Note All of the above applies to iOS 8 and later. Things worked differently in iOS 7. There’s a post on DevForums that explains the older approach. Finally, keep in mind that there may be other reasons for your task not starting. Specifically, if the task is flagged as discretionary (because you set the discretionary flag when creating the task’s session or because the task was started while your app was in the background), the task may be delayed for other reasons (low power, lack of Wi-Fi, and so on). Share and Enjoy — Quinn “The Eskimo!” @ Developer Technical Support @ Apple let myEmail = "eskimo" + "1" + "@" + "apple.com" (r. 22323366)
0
0
13k
Jul ’25
Understanding Also-Ran Connections
Every now and again folks notice that Network framework seems to create an unexpected number of connections on the wire. This post explains why that happens and what you should do about it. If you have questions or comments, put them in a new thread here on the forums. Use the App & System Services > Networking topic area and the Network tag. Share and Enjoy — Quinn “The Eskimo!” @ Developer Technical Support @ Apple let myEmail = "eskimo" + "1" + "@" + "apple.com" Understanding Also-Ran Connections Network framework implements the Happy Eyeballs algorithm. That might create more on-the-wire connections than you expect. There are two common places where folks notice this: When looking at a packet trace When implementing a listener Imagine that you’ve implemented a TCP server using NWListener and you connect to it from a client using NWConnection. In many situations there are multiple network paths between the client and the server. For example, on a local network there’s always at least two paths: the link-local IPv6 path and either an infrastructure IPv4 path or the link-local IPv4 path. When you start your NWConnection, Network framework’s Happy Eyeballs algorithm might [1] start a TCP connection for each of these paths. It then races those connections. The one that connects first is the ‘winner’, and Network framework uses that connection for your traffic. Once it has a winner, the other connections, the also-ran connections, are redundant, and Network framework just closes them. You can observe this behaviour on the client side by looking in the system log. Many Network framework log entries (subsystem com.apple.network) contain a connection identifier. For example C8 is the eighth connection started by this process. Each connection may have child connections (C8.1, C8.2, …) and grandchild connections (C8.1.1, C8.1.2, …), and so on. You’ll see state transitions for these child connections occurring in parallel. For example, the following log entries show that C8 is racing the connection of two grandchild connections, C8.1.1 and C8.1.2: type: debug time: 12:22:26.825331+0100 process: TestAlsoRanConnections subsystem: com.apple.network category: connection message: nw_socket_connect [C8.1.1:1] Calling connectx(…) type: debug time: 12:22:26.964150+0100 process: TestAlsoRanConnections subsystem: com.apple.network category: connection message: nw_socket_connect [C8.1.2:1] Calling connectx(…) Note For more information about accessing the system log, see Your Friend the System Log. You also see this on the server side, but in this case each connection is visible to your code. When you connect from the client, Network framework calls your listener’s new connection handler with multiple connections. One of those is the winning connection and you’ll receive traffic on it. The others are the also-ran connections, and they close promptly. IMPORTANT Depending on network conditions there may be no also-ran connections. Or there may be lots of them. If you want to test the also-ran connection case, use Network Link Conditioner to add a bunch of delay to your packets. You don’t need to write special code to handle also-ran connections. From the perspective of your listener, these are simply connections that open and then immediately close. There’s no difference between an also-ran connection and, say, a connection from a client that immediately crashes. Or a connection generated by someone doing a port scan. Your server must be resilient to such things. However, the presence of these also-ran connections can be confusing, especially if you’re just getting started with Network framework, and hence this post. [1] This is “might” because the exact behaviour depends on network conditions. More on that below.
0
0
147
Apr ’25
CallKit and PushToTalk related changes in iOS 26
Starting in iOS 26, two notable changes have been made to CallKit, LiveCommunicationKit, and the PushToTalk framework: As a diagnostic aid, we're introducing new dialogs to warn apps of voip push related issue, for example when they fail to report a call or when when voip push delivery stops. The specific details of that behavior are still being determined and are likely to change over time, however, the critical point here is that these alerts are only intended to help developers debug and improve their app. Because of that, they're specifically tied to development and TestFlight signed builds, so the alert dialogs will not appear for customers running app store builds. The existing termination/crashes will still occur, but the new warning alerts will not appear. As PushToTalk developers have previously been warned, the last unrestricted PushKit entitlement ("com.apple.developer.pushkit.unrestricted-voip.ptt") has been disabled in the iOS 26 SDK. ALL apps that link against the iOS 26 SDK which receive a voip push through PushKit and which fail to report a call to CallKit will be now be terminated by the system, as the API contract has long specified. __ Kevin Elliott DTS Engineer, CoreOS/Hardware
0
0
824
Jun ’25
On FTP
Questions about FTP crop up from time-to-time here on DevForums. In most cases I write a general “don’t use FTP” response, but I don’t have time to go into all the details. I’ve created this post as a place to collect all of those details, so I can reference them in other threads. IMPORTANT Apple’s official position on FTP is: All our FTP APIs have been deprecated, and you should avoid using deprecated APIs. Apple has been slowly removing FTP support from the user-facing parts of our system. The most recent example of this is that we removed the ftp command-line tool in macOS 10.13. You should avoid the FTP protocol and look to adopt more modern alternatives. The rest of this post is an informational explanation of the overall FTP picture. This post is locked so I can keep it focused. If you have questions or comments, please do create a new thread in the App & System Services > Networking subtopic and I’ll respond there. Don’t Use FTP FTP is a very old and very crufty protocol. Certain things that seem obvious to us now — like being able to create a GUI client that reliably shows a directory listing in a platform-independent manner — aren’t possible to do in FTP. However, by far the biggest problem with FTP is that it provides no security [1]. Specifically, the FTP protocol: Provides no on-the-wire privacy, so anyone can see the data you transfer Provides no client-authenticates-server authentication, so you have no idea whether you’re talking to the right server Provides no data integrity, allowing an attacker to munge your data in transit Transfers user names and passwords in the clear Using FTP for anonymous downloads may be acceptable (see the explanation below) but most other uses of FTP are completely inappropriate for the modern Internet. IMPORTANT You should only use FTP for anonymous downloads if you have an independent way to check the integrity of the data you’ve downloaded. For example, if you’re downloading a software update, you could use code signing to check its integrity. If you don’t check the integrity of the data you’ve downloaded, an attacker could substitute a malicious download instead. This would be especially bad in, say, the software update case. These fundamental problems with the FTP protocol mean that it’s not a priority for Apple. This is reflected in the available APIs, which is the subject of the next section. FTP APIs Apple provides two FTP APIs: All Apple platforms provide FTP downloads via URLSession. Most Apple platforms (everything except watchOS) support CFFTPStream, which allows for directory listings, downloads, uploads, and directory creation. All of these FTP APIs are now deprecated: URLSession was deprecated for the purposes of FTP in the 2022 SDKs (macOS 13, iOS 16, iPadOS 16, tvOS 16, watchOS 9) [2]. CFFTPStream was deprecated in the 2016 SDKs (macOS 10.11, iOS 9, iPadOS 9, tvOS 9). CFFTPStream still works about as well as it ever did, which is not particularly well. Specifically: There is at least one known crashing bug (r. 35745763), albeit one that occurs quite infrequently. There are clear implementation limitations — like the fact that CFFTPCreateParsedResourceListing assumes a MacRoman text encoding (r. 7420589) — that won’t be fixed. If you’re looking for an example of how to use these APIs, check out SimpleFTPSample. Note This sample hasn’t been updated since 2013 and is unlikely to ever be updated given Apple’s position on FTP. The FTP support in URLSession has significant limitations: It only supports FTP downloads; there’s no support for uploads or any other FTP operations. It doesn’t support resumable FTP downloads [3]. It doesn’t work in background sessions. That prevents it from running FTP downloads in the background on iOS. It’s only supported in classic loading mode. See the usesClassicLoadingMode property and the doc comments in <Foundation/NSURLSession.h>. If Apple’s FTP APIs are insufficient for your needs, you’ll need to write or acquire your own FTP library. Before you do that, however, consider switching to an alternative protocol. After all, if you’re going to go to the trouble of importing a large FTP library into your code base, you might as well import a library for a better protocol. The next section discusses some options in this space. Alternative Protocols There are numerous better alternatives to FTP: HTTPS is by far the best alternative to FTP, offering good security, good APIs on Apple platforms, good server support, and good network compatibility. Implementing traditional FTP operations over HTTPS can be a bit tricky. One possible way forward is to enable DAV extensions on the server. FTPS is FTP over TLS (aka SSL). While FTPS adds security to the protocol, which is very important, it still inherits many of FTP’s other problems. Personally I try to avoid this protocol. SFTP is a file transfer protocol that’s completely unrelated to FTP. It runs over SSH, making it a great alternative in many of the ad hoc setups that traditionally use FTP. Apple doesn’t have an API for either FTPS or SFTP, although on macOS you may be able to make some headway by invoking the sftp command-line tool. Share and Enjoy — Quinn “The Eskimo!” @ Developer Technical Support @ Apple let myEmail = "eskimo" + "1" + "@" + "apple.com" [1] In another thread someone asked me about FTP’s other problems, those not related to security, so let’s talk about that. One of FTP’s implicit design goals was to provide cross-platform support that exposes the target platform. You can think of FTP as being kinda like telnet. When you telnet from Unix to VMS, it doesn’t aim to abstract away VMS commands, so that you can type Unix commands at the VMS prompt. Rather, you’re expected to run VMS commands. FTP is (a bit) like that. This choice made sense back when the FTP protocol was invented. Folks were expecting to use FTP via a command-line client, so there was a human in the loop. If they ran a command and it produced VMS-like output, that was fine because they knew that they were FTPing into a VMS machine. However, most users today are using GUI clients, and this design choice makes it very hard to create a general GUI client for FTP. Let’s consider the simple problem of getting the contents of a directory. When you send an FTP LIST command, the server would historically run the platform native directory list command and pipe the results back to you. To create a GUI client you have to parse that data to extract the file names. Doing that is a serious challenge. Indeed, just the first step, working out the text encoding, is a challenge. Many FTP servers use UTF-8, but some use ISO-Latin-1, some use other standard encodings, some use Windows code pages, and so on. I say “historically” above because there have been various efforts to standardise this stuff, both in the RFCs and in individual server implementations. However, if you’re building a general client you can’t rely on these efforts. After all, the reason why folks continue to use FTP is because of it widespread support. [2] To quote the macOS 13 Ventura Release Notes: FTP is deprecated for URLSession and related APIs. Please adopt modern secure networking protocols such as HTTPS. (92623659) [3] Although you can implement resumable downloads using the lower-level CFFTPStream API, courtesy of the kCFStreamPropertyFTPFileTransferOffset property. Revision History 2025-10-06 Explained that URLSession only supports FTP in classic loading mode. Made other minor editorial changes. 2024-04-15 Added a footnote about FTP’s other problems. Made other minor editorial changes. 2022-08-09 Noted that the FTP support in URLSession is now deprecated. Made other minor editorial changes. 2021-04-06 Fixed the formatting. Fixed some links. 2018-02-23 First posted.
0
0
5.7k
Oct ’25
CoreBluetooth and BLE AdvertisementData
Hi, We're receiving data via centralManager.centralManager.scanForPeripherals, with no options or filtering (for now), and in the func centralManager(_ central: CBCentralManager, didDiscover peripheral: CBPeripheral, advertisementData: [String : Any], rssi RSSI: NSNumber) callback, we get advertisementData for each bluetooth device found. But, I know one of my BLE devices is sending an Eddystone TLM payload, which generally is received into the kCBAdvDataServiceData part of the advertisementData dictionary, but, it doesn't show up. What is happening however (when comparing to other devices that do show that payload), is I've noticed the "isConnectable" part is false, and others have it true. Technically we're not "connecting" as such as we're simply reading passive advertisement data, but does that have any bearing on how CoreBluetooth decides to build up it's AdvertisementData response? Example (with serviceData; and I know this has Eddystone TLM) ["kCBAdvDataLocalName": FSC-BP105N, "kCBAdvDataRxPrimaryPHY": 1, "kCBAdvDataServiceUUIDs": <__NSArrayM 0x300b71f80>( FEAA, FEF5 ) , "kCBAdvDataTimestamp": 773270526.26279, "kCBAdvDataServiceData": { FFF0 = {length = 11, bytes = 0x36021892dc0d3015aeb164}; FEAA = {length = 14, bytes = 0x20000be680000339ffa229bbce8a}; }, "kCBAdvDataRxSecondaryPHY": 0, "kCBAdvDataIsConnectable": 1] Vs This also has Eddystone TLM configured ["kCBAdvDataLocalName": 100FA9FD-7000-1000, "kCBAdvDataIsConnectable": 0, "kCBAdvDataRxPrimaryPHY": 1, "kCBAdvDataRxSecondaryPHY": 0, "kCBAdvDataTimestamp": 773270918.97273] Any insight would be great to understand if the presence of other flags drive the exposure of ServiceData or not...
0
0
120
Jul ’25
About the Relay payload in iOS configuration profiles
Are the network relays introduced in 2023 and https://developer.apple.com/videos/play/wwdc2023/10002/ the same thing as the Private Relay introduced in 2021? https://developer.apple.com/videos/play/wwdc2021/10096/ We are considering verifying the relay function, but we are not sure whether they are the same function or different functions. https://developer.apple.com/documentation/devicemanagement/relay?language=objc
0
0
51
Apr ’25
Network Extension Resources
General: Forums subtopic: App & System Services > Networking DevForums tag: Network Extension Network Extension framework documentation Routing your VPN network traffic article Filtering traffic by URL sample code Filtering Network Traffic sample code TN3120 Expected use cases for Network Extension packet tunnel providers technote TN3134 Network Extension provider deployment technote TN3165 Packet Filter is not API technote Network Extension and VPN Glossary forums post Debugging a Network Extension Provider forums post Exporting a Developer ID Network Extension forums post Network Extension Framework Entitlements forums post Network Extension vs ad hoc techniques on macOS forums post Network Extension Provider Packaging forums post NWEndpoint History and Advice forums post Extra-ordinary Networking forums post Wi-Fi management: Wi-Fi Fundamentals forums post TN3111 iOS Wi-Fi API overview technote How to modernize your captive network developer news post iOS Network Signal Strength forums post See also Networking Resources. Share and Enjoy — Quinn “The Eskimo!” @ Developer Technical Support @ Apple let myEmail = "eskimo" + "1" + "@" + "apple.com"
0
0
3.0k
3w
iOS26 captive portal detection changes?
Hi all, I work on a smart product that, for setup, uses a captive portal to allow users to connect and configure the device. It emits a WiFi network and runs a captive portal - an HTTP server operates at 10.0.0.1, and a DNS server responds to all requests with 10.0.0.1 to direct "any and all" request to the server. When iOS devices connect, they send a request to captive.apple.com/hotspot-detect.html; if it returns success, that means they're on the internet; if not, the typical behavior in the past has been to assume you're connected to a captive portal and display what's being served. I serve any requests to /hotspot-detect.html with my captive portal page (index.html). This has worked reliably on iOS18 for a long time (user selects my products WiFi network, iOS detects portal and opens it). But almost everyone who's now trying with iOS26 is having the "automatic pop up" behavior fail - usually it says "Error opening page - Hotspot login cannot open the page because the network connection was lost." However, if opening safari and navigating to any URL (or 10.0.0.1) the portal loads - it's just the iOS auto-detect and open that's not working iOS18 always succeeds; iOS26 always fails. Anybody have any idea what changes may have been introduced in iOS26 on this front, or anything I can do to help prompt or coax iOS26 into loading the portal? It typically starts reading, but then stops mid-read.
0
0
288
Oct ’25
TLS for App Developers
Transport Layer Security (TLS) is the most important security protocol on the Internet today. Most notably, TLS puts the S into HTTPS, adding security to the otherwise insecure HTTP protocol. IMPORTANT TLS is the successor to the Secure Sockets Layer (SSL) protocol. SSL is no longer considered secure and it’s now rarely used in practice, although many folks still say SSL when they mean TLS. TLS is a complex protocol. Much of that complexity is hidden from app developers but there are places where it’s important to understand specific details of the protocol in order to meet your requirements. This post explains the fundamentals of TLS, concentrating on the issues that most often confuse app developers. Note The focus of this is TLS-PKI, where PKI stands for public key infrastructure. This is the standard TLS as deployed on the wider Internet. There’s another flavour of TLS, TLS-PSK, where PSK stands for pre-shared key. This has a variety of uses, but an Apple platforms we most commonly see it with local traffic, for example, to talk to a Wi-Fi based accessory. For more on how to use TLS, both TLS-PKI and TLS-PSK, in a local context, see TLS For Accessory Developers. Server Certificates For standard TLS to work the server must have a digital identity, that is, the combination of a certificate and the private key matching the public key embedded in that certificate. TLS Crypto Magic™ ensures that: The client gets a copy of the server’s certificate. The client knows that the server holds the private key matching the public key in that certificate. In a typical TLS handshake the server passes the client a list of certificates, where item 0 is the server’s certificate (the leaf certificate), item N is (optionally) the certificate of the certificate authority that ultimately issued that certificate (the root certificate), and items 1 through N-1 are any intermediate certificates required to build a cryptographic chain of trust from 0 to N. Note The cryptographic chain of trust is established by means of digital signatures. Certificate X in the chain is issued by certificate X+1. The owner of certificate X+1 uses their private key to digitally sign certificate X. The client verifies this signature using the public key embedded in certificate X+1. Eventually this chain terminates in a trusted anchor, that is, a certificate that the client trusts by default. Typically this anchor is a self-signed root certificate from a certificate authority. Note Item N is optional for reasons I’ll explain below. Also, the list of intermediate certificates may be empty (in the case where the root certificate directly issued the leaf certificate) but that’s uncommon for servers in the real world. Once the client gets the server’s certificate, it evaluates trust on that certificate to confirm that it’s talking to the right server. There are three levels of trust evaluation here: Basic X.509 trust evaluation checks that there’s a cryptographic chain of trust from the leaf through the intermediates to a trusted root certificate. The client has a set of trusted root certificates built in (these are from well-known certificate authorities, or CAs), and a site admin can add more via a configuration profile. This step also checks that none of the certificates have expired, and various other more technical criteria (like the Basic Constraints extension). Note This explains why the server does not have to include the root certificate in the list of certificates it passes to the client; the client has to have the root certificate installed if trust evaluation is to succeed. In addition, TLS trust evaluation (per RFC 2818) checks that the DNS name that you connected to matches the DNS name in the certificate. Specifically, the DNS name must be listed in the Subject Alternative Name extension. Note The Subject Alternative Name extension can also contain IP addresses, although that’s a much less well-trodden path. Also, historically it was common to accept DNS names in the Common Name element of the Subject but that is no longer the case on Apple platforms. App Transport Security (ATS) adds its own security checks. Basic X.509 and TLS trust evaluation are done for all TLS connections. ATS is only done on TLS connections made by URLSession and things layered on top URLSession (like WKWebView). In many situations you can override trust evaluation; for details, see Technote 2232 HTTPS Server Trust Evaluation). Such overrides can either tighten or loosen security. For example: You might tighten security by checking that the server certificate was issued by a specific CA. That way, if someone manages to convince a poorly-managed CA to issue them a certificate for your server, you can detect that and fail. You might loosen security by adding your own CA’s root certificate as a trusted anchor. IMPORTANT If you rely on loosened security you have to disable ATS. If you leave ATS enabled, it requires that the default server trust evaluation succeeds regardless of any customisations you do. Mutual TLS The previous section discusses server trust evaluation, which is required for all standard TLS connections. That process describes how the client decides whether to trust the server. Mutual TLS (mTLS) is the opposite of that, that is, it’s the process by which the server decides whether to trust the client. Note mTLS is commonly called client certificate authentication. I avoid that term because of the ongoing industry-wide confusion between certificates and digital identities. While it’s true that, in mTLS, the server authenticates the client certificate, to set this up on the client you need a digital identity, not a certificate. mTLS authentication is optional. The server must request a certificate from the client and the client may choose to supply one or not (although if the server requests a certificate and the client doesn’t supply one it’s likely that the server will then fail the connection). At the TLS protocol level this works much like it does with the server certificate. For the client to provide this certificate it must apply a digital identity, known as the client identity, to the connection. TLS Crypto Magic™ assures the server that, if it gets a certificate from the client, the client holds the private key associated with that certificate. Where things diverge is in trust evaluation. Trust evaluation of the client certificate is done on the server, and the server uses its own rules to decided whether to trust a specific client certificate. For example: Some servers do basic X.509 trust evaluation and then check that the chain of trust leads to one specific root certificate; that is, a client is trusted if it holds a digital identity whose certificate was issued by a specific CA. Some servers just check the certificate against a list of known trusted client certificates. When the client sends its certificate to the server it actually sends a list of certificates, much as I’ve described above for the server’s certificates. In many cases the client only needs to send item 0, that is, its leaf certificate. That’s because: The server already has the intermediate certificates required to build a chain of trust from that leaf to its root. There’s no point sending the root, as I discussed above in the context of server trust evaluation. However, there are no hard and fast rules here; the server does its client trust evaluation using its own internal logic, and it’s possible that this logic might require the client to present intermediates, or indeed present the root certificate even though it’s typically redundant. If you have problems with this, you’ll have to ask the folks running the server to explain its requirements. Note If you need to send additional certificates to the server, pass them to the certificates parameter of the method you use to create your URLCredential (typically init(identity:certificates:persistence:)). One thing that bears repeating is that trust evaluation of the client certificate is done on the server, not the client. The client doesn’t care whether the client certificate is trusted or not. Rather, it simply passes that certificate the server and it’s up to the server to make that decision. When a server requests a certificate from the client, it may supply a list of acceptable certificate authorities [1]. Safari uses this to filter the list of client identities it presents to the user. If you are building an HTTPS server and find that Safari doesn’t show the expected client identity, make sure you have this configured correctly. If you’re building an iOS app and want to implement a filter like Safari’s, get this list using: The distinguishedNames property, if you’re using URLSession The sec_protocol_metadata_access_distinguished_names routine, if you’re using Network framework [1] See the certificate_authorities field in Section 7.4.4 of RFC 5246, and equivalent features in other TLS versions. Self-Signed Certificates Self-signed certificates are an ongoing source of problems with TLS. There’s only one unequivocally correct place to use a self-signed certificate: the trusted anchor provided by a certificate authority. One place where a self-signed certificate might make sense is in a local environment, that is, securing a connection between peers without any centralised infrastructure. However, depending on the specific circumstances there may be a better option. TLS For Accessory Developers discusses this topic in detail. Finally, it’s common for folks to use self-signed certificates for testing. I’m not a fan of that approach. Rather, I recommend the approach described in QA1948 HTTPS and Test Servers. For advice on how to set that up using just your Mac, see TN2326 Creating Certificates for TLS Testing. TLS Standards RFC 6101 The Secure Sockets Layer (SSL) Protocol Version 3.0 (historic) RFC 2246 The TLS Protocol Version 1.0 RFC 4346 The Transport Layer Security (TLS) Protocol Version 1.1 RFC 5246 The Transport Layer Security (TLS) Protocol Version 1.2 RFC 8446 The Transport Layer Security (TLS) Protocol Version 1.3 RFC 4347 Datagram Transport Layer Security RFC 6347 Datagram Transport Layer Security Version 1.2 RFC 9147 The Datagram Transport Layer Security (DTLS) Protocol Version 1.3 Share and Enjoy — Quinn “The Eskimo!” @ Developer Technical Support @ Apple let myEmail = "eskimo" + "1" + "@" + "apple.com" Revision History: 2025-11-21 Clearly defined the terms TLS-PKI and TLS-PSK. 2024-03-19 Adopted the term mutual TLS in preference to client certificate authentication throughout, because the latter feeds into the ongoing certificate versus digital identity confusion. Defined the term client identity. Added the Self-Signed Certificates section. Made other minor editorial changes. 2023-02-28 Added an explanation mTLS acceptable certificate authorities. 2022-12-02 Added links to the DTLS RFCs. 2022-08-24 Added links to the TLS RFCs. Made other minor editorial changes. 2022-06-03 Added a link to TLS For Accessory Developers. 2021-02-26 Fixed the formatting. Clarified that ATS only applies to URLSession. Minor editorial changes. 2020-04-17 Updated the discussion of Subject Alternative Name to account for changes in the 2019 OS releases. Minor editorial updates. 2018-10-29 Minor editorial updates. 2016-11-11 First posted.
0
0
8.2k
Nov ’25
URL Filter and Content Filter Providers
Hello, I have a few questions regarding URL Filter (iOS 26) and Content Filter Providers. URL Filter According to the WWDC26 video, URL Filter appears to be available for both consumer and enterprise deployments. This seems consistent with the classic Network Extension Provider Deployment documentation (TN3134 – August 2025), where no specific deployment restriction is mentioned. However, a more recent document (Apple Platform Deployment, September 2025) indicates the following for URL Filter: “Requires supervision on iPhone, iPad and Mac” (with a green checkmark). 👉 My question: Is URL Filter actually available for consumer use on non-supervised iPhones (deployed on Testflight and AppStore), or is supervision now required? Content Filter Providers From past experience, I remember that Content Filter Providers were only available on supervised devices. Based on the current documentation, I am questioning their usability in a consumer context, i.e. on non-supervised iPhones. In the Network Extension Provider Deployment documentation, it is stated that this is a Network Extension and that, since iOS 16, it is a “per-app on managed device” restriction. In the more recent Apple Platform Deployment document, it states for iPhone and iPad: “App needs to be installed on the user’s iOS and iPadOS device and deletion can be prevented if the device is supervised.” 👉 My understanding: Supervised device: The Content Filter Provider is installed via a host application that controls enabling/disabling the filter, and the host app can be prevented from being removed thanks to supervision. Non-supervised device: The Content Filter Provider is also installed via a host application that controls enabling/disabling the filter, but the app can be removed by the user, which would remove the filter. 👉 My question: Can Content Filter Providers be used in a consumer context on non-supervised iPhones (deployed on Testflight and AppStore), accepting that the user can uninstall the host app (and therefore remove the filter)? Thank you in advance for your feedback. Sources: TN3134 => TN3134: Network Extension provider deployment | Apple Developer Documentation Apple Platform Deployment / Filter content for Apple devices => https://support.apple.com/en-gb/guide/deployment/dep1129ff8d2/1/web/1.0
0
2
54
4w
Network Interface APIs
For important background information, read Extra-ordinary Networking before reading this. Share and Enjoy — Quinn “The Eskimo!” @ Developer Technical Support @ Apple let myEmail = "eskimo" + "1" + "@" + "apple.com" Network Interface APIs Most developers don’t need to interact directly with network interfaces. If you do, read this post for a summary of the APIs available to you. Before you read this, read Network Interface Concepts. Interface List The standard way to get a list of interfaces and their addresses is getifaddrs. To learn more about this API, see its man page. A network interface has four fundamental attributes: A set of flags — These are packed into a CUnsignedInt. The flags bits are declared in <net/if.h>, starting with IFF_UP. An interface type — See Network Interface Type, below. An interface index — Valid indexes are greater than 0. A BSD interface name. For example, an Ethernet interface might be called en0. The interface name is shared between multiple network interfaces running over a given hardware interface. For example, IPv4 and IPv6 running over that Ethernet interface will both have the name en0. WARNING BSD interface names are not considered API. There’s no guarantee, for example, that an iPhone’s Wi-Fi interface is en0. You can map between the last two using if_indextoname and if_nametoindex. See the if_indextoname man page for details. An interface may also have address information. If present, this always includes the interface address (ifa_addr) and the network mask (ifa_netmask). In addition: Broadcast-capable interfaces (IFF_BROADCAST) have a broadcast address (ifa_broadaddr, which is an alias for ifa_dstaddr). Point-to-point interfaces (IFF_POINTOPOINT) have a destination address (ifa_dstaddr). Calling getifaddrs from Swift is a bit tricky. For an example of this, see QSocket: Interfaces. IP Address List Once you have getifaddrs working, it’s relatively easy to manipulate the results to build a list of just IP addresses, a list of IP addresses for each interface, and so on. QSocket: Interfaces has some Swift snippets that show this. Interface List Updates The interface list can change over time. Hardware interfaces can be added and removed, network interfaces come up and go down, and their addresses can change. It’s best to avoid caching information from getifaddrs. If thats unavoidable, use the kNotifySCNetworkChange Darwin notification to update your cache. For information about registering for Darwin notifications, see the notify man page (in section 3). This notification just tells you that something has changed. It’s up to you to fetch the new interface list and adjust your cache accordingly. You’ll find that this notification is sometimes posted numerous times in rapid succession. To avoid unnecessary thrashing, debounce it. While the Darwin notification API is easy to call from Swift, Swift does not import kNotifySCNetworkChange. To fix that, define that value yourself, calling a C function to get the value: var kNotifySCNetworkChange: UnsafePointer<CChar> { networkChangeNotifyKey() } Here’s what that C function looks like: extern const char * networkChangeNotifyKey(void) { return kNotifySCNetworkChange; } Network Interface Type There are two ways to think about a network interface’s type. Historically there were a wide variety of weird and wonderful types of network interfaces. The following code gets this legacy value for a specific BSD interface name: func legacyTypeForInterfaceNamed(_ name: String) -> UInt8? { var addrList: UnsafeMutablePointer<ifaddrs>? = nil let err = getifaddrs(&addrList) // In theory we could check `errno` here but, honestly, what are gonna // do with that info? guard err >= 0, let first = addrList else { return nil } defer { freeifaddrs(addrList) } return sequence(first: first, next: { $0.pointee.ifa_next }) .compactMap { addr in guard let nameC = addr.pointee.ifa_name, name == String(cString: nameC), let sa = addr.pointee.ifa_addr, sa.pointee.sa_family == AF_LINK, let data = addr.pointee.ifa_data else { return nil } return data.assumingMemoryBound(to: if_data.self).pointee.ifi_type } .first } The values are defined in <net/if_types.h>, starting with IFT_OTHER. However, this value is rarely useful because many interfaces ‘look like’ Ethernet and thus have a type of IFT_ETHER. Network framework has the concept of an interface’s functional type. This is an indication of how the interface fits into the system. There are two ways to get an interface’s functional type: If you’re using Network framework and have an NWInterface value, get the type property. If not, call ioctl with a SIOCGIFFUNCTIONALTYPE request. The return values are defined in <net/if.h>, starting with IFRTYPE_FUNCTIONAL_UNKNOWN. Swift does not import SIOCGIFFUNCTIONALTYPE, so it’s best to write this code in a C: extern uint32_t functionalTypeForInterfaceNamed(const char * name) { int fd = socket(AF_INET, SOCK_DGRAM, 0); if (fd < 0) { return IFRTYPE_FUNCTIONAL_UNKNOWN; } struct ifreq ifr = {}; strlcpy(ifr.ifr_name, name, sizeof(ifr.ifr_name)); bool success = ioctl(fd, SIOCGIFFUNCTIONALTYPE, &ifr) >= 0; int junk = close(fd); assert(junk == 0); if ( ! success ) { return IFRTYPE_FUNCTIONAL_UNKNOWN; } return ifr.ifr_ifru.ifru_functional_type; } Finally, TN3158 Resolving Xcode 15 device connection issues documents the SIOCGIFDIRECTLINK flag as a specific way to identify the network interfaces uses by Xcode for device connection traffic. Revision History 2025-12-10 Added info about SIOCGIFDIRECTLINK. 2023-07-19 First posted.
0
0
2.1k
Dec ’25
Recommended alternatives to leaf cert pinning to prevent MITM
Hey there Are there any recommendations or guidance for apps on alternatives to certificate pinning to secure their device network traffic? I want to move away from the overhead and risk associated with rotating certificates when using leaf pinning. However, I also don't want people to be able to perform a MITM attack easily using something like Charles Proxy with a self‑signed certificate added to the trust store. My understanding is that an app cannot distinguish between user‑trusted certificates and system‑trusted certificates in the trust store, so it cannot block traffic that uses user‑trusted certificates.
0
0
46
2w
Network Extension Framework Entitlements
At WWDC 2015 Apple announced two major enhancements to the Network Extension framework: Network Extension providers — These are app extensions that let you insert your code at various points within the networking stack, including: Packet tunnels via NEPacketTunnelProvider App proxies via NEAppProxyProvider Content filters via NEFilterDataProvider and NEFilterControlProvider Hotspot Helper (NEHotspotHelper) — This allows you to create an app that assists the user in navigating a hotspot (a Wi-Fi network where the user must interact with the network in order to get access to the wider Internet). Originally, using any of these facilities required authorisation from Apple. Specifically, you had to apply for, and be granted access to, a managed capability. In Nov 2016 this policy changed for Network Extension providers. Any developer can now use the Network Extension provider capability like they would any other capability. There is one exception to this rule: Network Extension app push providers, introduced by iOS 14 in 2020, still requires that Apple authorise the use of a managed capability. To apply for that, follow the link in Local push connectivity. Also, the situation with Hotspot Helpers remains the same: Using a Hotspot Helper, requires that Apple authorise that use via a managed capability. To apply for that, follow the link in Hotspot helper. IMPORTANT Pay attention to this quote from the documentation: NEHotspotHelper is only useful for hotspot integration. There are both technical and business restrictions that prevent it from being used for other tasks, such as accessory integration or Wi-Fi based location. The rest of this document answers some frequently asked questions about the Nov 2016 change. #1 — Has there been any change to the OS itself? No, this change only affects the process by which you get the capabilities you need in order to use existing Network Extension framework facilities. Previously these were managed capabilities, meaning their use was authorised by Apple. Now, except for app push providers and Hotspot Helper, you can enable the necessary capabilities using Xcode’s Signing & Capabilities editor or the Developer website. IMPORTANT Some Network Extension providers have other restrictions on their use. For example, a content filter can only be used on a supervised device. These restrictions are unchanged. See TN3134 Network Extension provider deployment for the details. #2 — How exactly do I enable the Network Extension provider capability? In the Signing & Capabilities editor, add the Network Extensions capability and then check the box that matches the provider you’re creating. In the Certificates, Identifiers & Profiles section of the Developer website, when you add or edit an App ID, you’ll see a new capability listed, Network Extensions. Enable that capability in your App ID and then regenerate the provisioning profiles based on that App ID. A newly generated profile will include the com.apple.developer.networking.networkextension entitlement in its allowlist; this is an array with an entry for each of the supported Network Extension providers. To confirm that this is present, dump the profile as shown below. $ security cms -D -i NETest.mobileprovision … <plist version="1.0"> <dict> … <key>Entitlements</key> <dict> <key>com.apple.developer.networking.networkextension</key> <array> <string>packet-tunnel-provider</string> <string>content-filter-provider</string> <string>app-proxy-provider</string> … and so on … </array> … </dict> … </dict> </plist> #3 — I normally use Xcode’s Signing & Capabilities editor to manage my entitlements. Do I have to use the Developer website for this? No. Xcode 11 and later support this capability in the Signing & Capabilities tab of the target editor (r. 28568128 ). #4 — Can I still use Xcode’s “Automatically manage signing” option? Yes. Once you modify your App ID to add the Network Extension provider capability, Xcode’s automatic code signing support will include the entitlement in the allowlist of any profiles that it generates based on that App ID. #5 — What should I do if I previously applied for the Network Extension provider managed capability and I’m still waiting for a reply? Consider your current application cancelled, and use the new process described above. #6 — What should I do if I previously applied for the Hotspot Helper managed capability and I’m still waiting for a reply? Apple will continue to process Hotspot Helper managed capability requests and respond to you in due course. #7 — What if I previously applied for both Network Extension provider and Hotspot Helper managed capabilities? Apple will ignore your request for the Network Extension provider managed capability and process it as if you’d only asked for the Hotspot Helper managed capability. #8 — On the Mac, can Developer ID apps host Network Extension providers? Yes, but there are some caveats: This only works on macOS 10.15 or later. Your Network Extension provider must be packaged as a system extension, not an app extension. You must use the *-systemextension values for the Network Extension entitlement (com.apple.developer.networking.networkextension). For more on this, see Exporting a Developer ID Network Extension. #9 — After moving to the new process, my app no longer has access to the com.apple.managed.vpn.shared keychain access group. How can I regain that access? Access to this keychain access group requires another managed capability. If you need that, please open a DTS code-level support request and we’ll take things from there. IMPORTANT This capability is only necessary if your VPN supports configuration via a configuration profile and needs to access credentials from that profile (as discussed in the Profile Configuration section of the NETunnelProviderManager Reference). Many VPN apps don’t need this facility. If you were previously granted the Network Extension managed capability (via the process in place before Nov 2016), make sure you mention that; restoring your access to the com.apple.managed.vpn.shared keychain access group should be straightforward in that case. Share and Enjoy — Quinn “The Eskimo!” @ Developer Technical Support @ Apple let myEmail = "eskimo" + "1" + "@" + "apple.com" Revision History 2025-11-11 Removed the discussion of TSI assets because those are no longer a thing. 2025-09-12 Adopted the code-level support request terminology. Made other minor editorial changes. 2023-01-11 Added a discussion of Network Extension app push providers. Added a link to Exporting a Developer ID Network Extension. Added a link to TN3134. Made significant editorial changes. 2020-02-27 Fixed the formatting. Updated FAQ#3. Made minor editorial changes. 2020-02-16 Updated FAQ#8 to account for recent changes. Updated FAQ#3 to account for recent Xcode changes. Made other editorial changes. 2016-01-25 Added FAQ#9. 2016-01-6 Added FAQ#8. 2016-11-11 Added FAQ#5, FAQ#6 and FAQ#7. 2016-11-11 First posted.
0
0
23k
Nov ’25
AccessorySetupKit – WiFi picker – show accessories after factory reset?
Hi there, We’re developing a companion app for a smart home product that communicates over the user’s local network. To provision the device, it initially creates its own Wi-Fi network. The user joins this temporary network and enters their home Wi-Fi credentials via our app. The app then sends those credentials directly to the device, which stores them and connects to the local network for normal operation. We’re using AccessorySetupKit to discover nearby devices (via SSID prefix) and NEHotspotManager to join the accessory’s Wi-Fi network once the user selects it. This workflow works well in general. However, we’ve encountered a problem: if the user factory-resets the accessory, or needs to restart setup (for example, after entering the wrong Wi-Fi password), the device no longer appears in the accessory picker. In iOS 18, we were able to work around this by calling removeAccessory() after the device is selected. This forces the picker to always display the accessory again. But in iOS 26, a new confirmation dialog now appears when calling removeAccessory(), which confuses users during setup. We’re looking for a cleaner way to handle this scenario — ideally a way to make the accessory rediscoverable without prompting the user to confirm removal. Thanks for your time and guidance.
0
3
128
Nov ’25
DeviceDiscoveryUI's UIViewControllers are available for Wi-Fi Aware?
HI, I am currently developing an app that utilizes Wi-Fi Aware. According to the Wi-Fi Aware framework examples and the WWDC25 session on Wi-Fi Aware, discovery is handled using DevicePairingView and DevicePicker from the DeviceDiscoveryUI module. However, these SwiftUI views present their connection UI modally when tapped. My app's design requires the ability to control the presentation of this UI programmatically, rather than relying on a user tap. While inspecting the DeviceDiscoveryUI module, I found DDDevicePairingViewController and DDDevicePickerViewController, which appear to be the UIViewController counterparts to the SwiftUI views. The initializer for DDDevicePairingViewController accepts a ListenerProvider, so it seems I can pass the same ListenerProvider instance that is used with the DevicePairingView. However, the initializer for DDDevicePickerViewController requires an NWBrowser.Descriptor, which seems incompatible with the parameters used for the SwiftUI DevicePicker. I have two main questions: (1) Can DDDevicePairingViewController and DDDevicePickerViewController be officially used for Wi-Fi Aware pairing? (2) Are there any plans to provide more customization or programmatic control over the DevicePairingView and DevicePicker (for example, allowing us to trigger their modal presentation programmatically)? Thank you.
0
0
46
Nov ’25
Error Domain=NSURLErrorDomain Code=-1009
When I make a local network HTTP request, an error occurs. I'm sure I've granted wireless data permissions and local network permissions, and I'm connected to the correct Wi-Fi. This problem is intermittent, but once it happens, it will keep happening, and the only way to fix it is to restart the phone. Here is the error log: sessionTaskFailed(error: Error Domain=NSURLErrorDomain Code=-1009 "似乎已断开与互联网的连接。" UserInfo={_kCFStreamErrorCodeKey=50, NSUnderlyingError=0x30398a5b0 {Error Domain=kCFErrorDomainCFNetwork Code=-1009 "(null)" UserInfo={_NSURLErrorNWPathKey=unsatisfied (Local network prohibited), interface: en0[802.11], uses wifi, _kCFStreamErrorCodeKey=50, _kCFStreamErrorDomainKey=1}}, _NSURLErrorFailingURLSessionTaskErrorKey=LocalDataTask .&lt;63&gt;, _NSURLErrorRelatedURLSessionTaskErrorKey=( "LocalDataTask .&lt;63&gt;" ), NSLocalizedDescription=似乎已断开与互联网的连接。, NSErrorFailingURLStringKey=http://192.168.2.1:80/v1/parameters, NSErrorFailingURLKey=http://192.168.2.1:80/v1/parameters, _kCFStreamErrorDomainKey=1})
1
0
219
Mar ’25