For important background information, read Extra-ordinary Networking before reading this.
Share and Enjoy
—
Quinn “The Eskimo!” @ Developer Technical Support @ Apple
let myEmail = "eskimo" + "1" + "@" + "apple.com"
Don’t Try to Get the Device’s IP Address
I regularly see questions like:
How do I find the IP address of the device?
How do I find the IP address of the Wi-Fi interface?
How do I identify the Wi-Fi interface?
I also see a lot of really bad answers to these questions. That’s understandable, because the questions themselves don’t make sense. Networking on Apple platforms is complicated and many of the things that are ‘obviously’ true are, in fact, not true at all. For example:
There’s no single IP address that represents the device, or an interface. A device can have 0 or more interfaces, each of which can have 0 or more IP addresses, each of which can be IPv4 and IPv6.
A device can have multiple interfaces of a given type. It’s common for iPhones to have multiple WWAN interfaces, for example.
It’s not possible to give a simple answer to any of these questions, because the correct answer depends on the context. Why do you need this particular information? What are you planning to do with it?
This post describes the scenarios I most commonly encounter, with my advice on how to handle each scenario.
IMPORTANT BSD interface names, like en0, are not considered API. There’s no guarantee, for example, that an iPhone’s Wi-Fi interface is en0. If you write code that relies on a hard-coded interface name, it will fail in some situations.
Service Discovery
Some folks want to identify the Wi-Fi interface so that they can run a custom service discovery protocol over it. Before you do that, I strongly recommend that you look at Bonjour. This has a bunch of advantages:
It’s an industry standard [1].
It’s going to be more efficient on the ‘wire’.
You don’t have to implement it yourself, you can just call an API [2].
For information about the APIs available, see TN3151 Choosing the right networking API.
If you must implement your own service discovery protocol, don’t think in terms of finding the Wi-Fi interface. Rather, write your code to work with all Wi-Fi interfaces, or perhaps even all Ethernet-like interfaces. That’s what Apple’s Bonjour implementation does, and it means that things will work in odd situations [3].
To find all Wi-Fi interfaces, get the interface list and filter it for ones with the Wi-Fi functional type. To find all broadcast-capable interfaces, get the interface list and filter it for interfaces with the IFF_BROADCAST flag set. If the service you’re trying to discover only supports IPv4, filter out any IPv6-only interfaces.
For advice on how to do this, see Interface List and Network Interface Type in Network Interface APIs.
When working with multiple interfaces, it’s generally a good idea to create a socket per interface and then bind that socket to the interface. That ensures that, when you send a packet, it’ll definitely go out the interface you expect.
For more information on how to implement broadcasts correctly, see Broadcasts and Multicasts, Hints and Tips.
[1] Bonjour is an Apple term for:
RFC 3927 Dynamic Configuration of IPv4 Link-Local Addresses
RFC 6762 Multicast DNS
RFC 6763 DNS-Based Service Discovery
[2] That’s true even on non-Apple platforms. It’s even true on most embedded platforms. If you’re talking to a Wi-Fi accessory, see Working with a Wi-Fi Accessory.
[3] Even if the service you’re trying to discover can only be found on Wi-Fi, it’s possible for a user to have their iPhone on an Ethernet that’s bridged to a Wi-Fi. Why on earth would they do that? Well, security, of course. Some organisations forbid their staff from using Wi-Fi.
Logging and Diagnostics
Some folks want to log the IP address of the Wi-Fi interface, or the WWAN, or both for diagnostic purposes. This is quite feasible, with the only caveat being there may be multiple interfaces of each type.
To find all interfaces of a particular type, get the interface list and filter it for interfaces with that functional type. See Interface List and Network Interface Type in Network Interface APIs.
Interface for an Outgoing Connection
There are situations where you need to get the interface used by a particular connection. A classic example of that is FTP. When you set up a transfer in FTP, you start with a control connection to the FTP server. You then open a listener and send its IP address and port to the FTP server over your control connection. What IP address should you use?
There’s an easy answer here: Use the local IP address for the control connection. That’s the one that the server is most likely to be able to connect to.
To get the local address of a connection:
In Network framework, first get the currentPath property and then get its localEndpoint property.
In BSD Sockets, use getsockname. See its man page for details.
Now, this isn’t a particularly realistic example. Most folks don’t use FTP these days [1] but, even if they do, they use FTP passive mode, which avoids the need for this technique. However, this sort of thing still does come up in practice. I recently encountered two different variants of the same problem:
One developer was implementing VoIP software and needed to pass the devices IP address to their VoIP stack. The best IP address to use was the local IP address of their control connection to the VoIP server.
A different developer was upgrading the firmware of an accessory. They do this by starting a server within their app and sending a command to the accessory to download the firmware from that server. Again, the best IP address to use is the local address of the control connection.
[1] See the discussion in TN3151 Choosing the right networking API.
Listening for Connections
If you’re listening for incoming network connections, you don’t need to bind to a specific address. Rather, listen on all local addresses. In Network framework, this is the default for NWListener. In BSD Sockets, set the address to INADDR_ANY (IPv4) or in6addr_any (IPv6).
If you only want to listen on a specific interface, don’t try to bind to that interface’s IP address. If you do that, things will go wrong if the interface’s IP address changes. Rather, bind to the interface itself:
In Network framework, set either the requiredInterfaceType property or the requiredInterface property on the NWParameters you use to create your NWListener.
In BSD Sockets, set the IP_BOUND_IF (IPv4) or IPV6_BOUND_IF (IPv6) socket option.
How do you work out what interface to use? The standard technique is to get the interface list and filter it for interfaces with the desired functional type. See Interface List and Network Interface Type in Network Interface APIs. Remember that their may be multiple interfaces of a given type. If you’re using BSD Sockets, where you can only bind to a single interface, you’ll need to create multiple listeners, one for each interface.
Listener UI
Some apps have an embedded network server and they want to populate a UI with information on how to connect to that server. This is a surprisingly tricky task to do correctly. For the details, see Showing Connection Information for a Local Server.
Outgoing Connections
In some situations you might want to force an outgoing connection to run over a specific interface. There are four common cases here:
Set the local address of a connection [1].
Force a connection to run over a specific interface.
Force a connection to run over a type of interface.
Force a connection to run over an interface with specific characteristics. For example, you want to download some large resource without exhausting the user’s cellular data allowance.
The last case should be the most common — see the Constraints section of Network Interface Techniques — but all four are useful in specific circumstances.
The following sections explain how to tackle these tasks in the most common networking APIs.
[1] This implicitly forces the connection to use the interface with that address. For an explanation as to why, see the discussion of scoped routing in Network Interface Techniques.
Network Framework
Network framework has good support for all of these cases. Set one or more of the following properties on the NWParameters object you use to create your NWConnection:
requiredLocalEndpoint property
requiredInterface property
prohibitedInterfaces property
requiredInterfaceType property
prohibitedInterfaceTypes property
prohibitConstrainedPaths property
prohibitExpensivePaths property
Foundation URL Loading System
URLSession has fewer options than Network framework but they work in a similar way: Set one or more of the following properties on the URLSessionConfiguration object you use to create your session:
allowsCellularAccess property
allowsConstrainedNetworkAccess property
allowsExpensiveNetworkAccess property
Note While these session configuration properties are also available on URLRequest, it’s better to configure this on the session.
There’s no option that forces a connection to run over a specific interface. In most cases you don’t need this — it’s better to use the allowsConstrainedNetworkAccess and allowsExpensiveNetworkAccess properties — but there are some situations where that’s necessary. For advice on this front, see Running an HTTP Request over WWAN.
BSD Sockets
BSD Sockets has very few options in this space. One thing that’s easy and obvious is setting the local address of a connection: Do that by passing the address to bind.
Alternatively, to force a connection to run over a specific interface, set the IP_BOUND_IF (IPv4) or IPV6_BOUND_IF (IPv6) socket options.
Revision History
2025-01-21 Added a link to Broadcasts and Multicasts, Hints and Tips. Made other minor editorial changes.
2023-07-18 First posted.
Networking
RSS for tagExplore the networking protocols and technologies used by the device to connect to Wi-Fi networks, Bluetooth devices, and cellular data services.
Selecting any option will automatically load the page
Post
Replies
Boosts
Views
Activity
I am developing an application that processes a video file stored on a server. I use URLSessionDataTask with a delegate handler to download the file.
It is not necessary to download the entire file at once. Instead, I can load small chunks of the file as needed. This approach helps minimize memory consumption.
I am trying to design a network layer that supports this behavior. Ideally, I would like to have an interface similar to:
func readMoreData(length: Int) async throws -> Data
Problems I Encountered:
It seems that URLSessionDataTask does not allow controlling how many bytes will be downloaded. It always downloads the entire request.
If I call suspend on URLSessionDataTask, the network activity does not stop, and the file keeps downloading.
If I upgrade the dataTask to a StreamTask, the file still downloads, though reading bytes can be done through the StreamTask API.
I would prefer behavior similar to AsyncHTTPClient (a Swift Server library) or Network Framework. These frameworks allow controlling the number of bytes downloaded at a time. Unfortunately, they do not fit the specific requirements of my project.
Am I correct in understanding that controlling the download process is not possible with URLSessionDataTask?
As a possible solution, I am considering using HTTP Range Requests, though this would increase the number of additional server requests, which I would like to avoid.
Topic:
App & System Services
SubTopic:
Networking
The path from Network Extension’s in-provider networking APIs to Network framework has been long and somewhat rocky. The most common cause of confusion is NWEndpoint, where the same name can refer to two completely different types. I’ve helped a bunch of folks with this over the years, and I’ve decided to create this post to collect together all of those titbits.
If you have questions or comments, please put them in a new thread. Put it in the App & System Services > Networking subtopic and tag it with Network Extension. That way I’ll be sure to see it go by.
Share and Enjoy
—
Quinn “The Eskimo!” @ Developer Technical Support @ Apple
let myEmail = "eskimo" + "1" + "@" + "apple.com"
NWEndpoint History and Advice
A tale that spans three APIs, two languages, and ten years.
The NWEndpoint type has a long and complex history, and if you’re not aware of that history you can bump into weird problems. The goal of this post is to explain the history and then offer advice on how to get around specific problems.
IMPORTANT This post focuses on NWEndpoint, because that’s the type that causes the most problems, but there’s a similar situation with NWPath.
The History
In iOS 9 Apple introduced the Network Extension (NE) framework, which offers a convenient way for developers to create a custom VPN transport. Network Extension types all have the NE prefix.
Note I’m gonna use iOS versions here, just to keep the text simple. If you’re targeting some other platform, use this handy conversion table:
iOS | macOS | tvOS | watchOS | visionOS
--- + ----- + ---- + ------- + --------
9 | 10.11 | 9 | 2 | -
12 | 10.14 | 12 | 5 | -
18 | 15 | 18 | 11 | 2
At that time we also introduced in-provider networking APIs. The idea was that an NE provider could uses these Objective-C APIs to communicate with its VPN server, and thereby avoiding a bunch of ugly BSD Sockets code.
The in-provider networking APIs were limited to NE providers. Specifically, the APIs to construct an in-provider connection were placed on types that were only usable within an NE provider. For example, a packet tunnel provider could create a NWTCPConnection object by calling -createTCPConnectionToEndpoint:enableTLS:TLSParameters:delegate:] and -createTCPConnectionThroughTunnelToEndpoint:enableTLS:TLSParameters:delegate:, which are both methods on NEPacketTunnelProvider.
These in-provider networking APIs came with a number of ancillary types, including NWEndpoint and NWPath.
At the time we thought that we might promote these in-provider networking APIs to general-purpose networking APIs. That’s why the APIs use the NW prefix. For example, it’s NWTCPConnection, not NETCPConnection.
However, plans changed. In iOS 12 Apple shipped Network framework as our recommended general-purpose networking API. This actually includes two APIs:
A Swift API that follows Swift conventions, for example, the connection type is called NWConnection
A C API that follows C conventions, for example, the connection type is called nw_connection_t
These APIs follow similar design patterns to the in-provider networking API, and thus have similar ancillary types. Specifically, there are an NWEndpoint and nw_endpoint_t types, both of which perform a similar role to the NWEndpoint type in the in-provider networking API.
This was a source of some confusion in Swift, because the name NWEndpoint could refer to either the Network framework type or the Network Extension framework type, depending on what you’d included. Fortunately you could get around this by qualifying the type as either Network.NWEndpoint or NetworkExtension.NWEndpoint.
The arrival of Network framework meant that it no longer made sense to promote the in-provider networking APIs to general-purposes networking APIs. The in-provider networking APIs were on the path to deprecation.
However, deprecating these APIs was actually quite tricky. Network Extension framework uses these APIs in a number of interesting ways, and so deprecating them required adding replacements. In addition, we’d needed different replacements for Swift and Objective-C, because Network framework has separate APIs for Swift and C-based languages.
In iOS 18 we tackled that problem head on. To continue the NWTCPConnection example above, we replaced:
-createTCPConnectionToEndpoint:enableTLS:TLSParameters:delegate:] with nw_connection_t
-createTCPConnectionThroughTunnelToEndpoint:enableTLS:TLSParameters:delegate: with nw_connection_t combined with a new virtualInterface property on NEPacketTunnelProvider
Of course that’s the Objective-C side of things. In Swift, the replacement is NWConnection rather than nw_connection_t, and the type of the virtualInterface property is NWInterface rather than nw_interface_t.
But that’s not the full story. For the two types that use the same name in both frameworks, NWEndpoint and NWPath, we decided to use this opportunity to sort out that confusion. To see how we did that, check out the <NetworkExtension/NetworkExtension.apinotes> file in the SDK. Focusing on NWEndpoint for the moment, you’ll find two entries:
…
- Name: NWEndpoint
SwiftPrivate: true
…
SwiftVersions:
- Version: 5.0
…
- Name: NWEndpoint
SwiftPrivate: false
…
The first entry applies when you’re building with the Swift 6 language mode. This marks the type as SwiftPrivate, which means that Swift imports it as __NWEndpoint. That frees up the NWEndpoint name to refer exclusively to the Network framework type.
The second entry applies when you’re building with the Swift 5 language mode. It marks the type as not SwiftPrivate. This is a compatible measure to ensure that code written for Swift 5 continues to build.
The Advice
This sections discusses specific cases in this transition.
NWEndpoint and NWPath
In Swift 5 language mode, NWEndpoint and NWPath might refer to either framework, depending on what you’ve imported. Add a qualifier if there’s any ambiguity, for example, Network.NWEndpoint or NetworkExtension.NWEndpoint.
In Swift 6 language mode, NWEndpoint and NWPath always refer to the Network framework type. Add a __ prefix to get to the Network Extension type. For example, use NWEndpoint for the Network framework type and __NWEndpoint for the Network Extension type.
Direct and Through-Tunnel TCP Connections in Swift
To create a connection directly, simply create an NWConnection. This support both TCP and UDP, with or without TLS.
To create a connection through the tunnel, replace code like this:
let c = self.createTCPConnectionThroughTunnel(…)
with code like this:
let params = NWParameters.tcp
params.requiredInterface = self.virtualInterface
let c = NWConnection(to: …, using: params)
This is for TCP but the same basic process applies to UDP.
UDP and App Proxies in Swift
If you’re building an app proxy, transparent proxy, or DNS proxy in Swift and need to handle UDP flows using the new API, adopt the NEAppProxyUDPFlowHandling protocol. So, replace code like this:
class AppProxyProvider: NEAppProxyProvider {
…
override func handleNewUDPFlow(_ flow: NEAppProxyUDPFlow, initialRemoteEndpoint remoteEndpoint: NWEndpoint) -> Bool {
…
}
}
with this:
class AppProxyProvider: NEAppProxyProvider, NEAppProxyUDPFlowHandling {
…
func handleNewUDPFlow(_ flow: NEAppProxyUDPFlow, initialRemoteFlowEndpoint remoteEndpoint: NWEndpoint) -> Bool {
…
}
}
Creating a Network Rule
To create an NWHostEndpoint, replace code like this:
let ep = NWHostEndpoint(hostname: "1.2.3.4", port: "12345")
let r = NENetworkRule(destinationHost: ep, protocol: .TCP)
with this:
let ep = NWEndpoint.hostPort(host: "1.2.3.4", port: 12345)
let r = NENetworkRule(destinationHostEndpoint: ep, protocol: .TCP)
Note how the first label of the initialiser has changed from destinationHost to destinationHostEndpoint.
sometimes app from background to foreground , then send a Http request will got network lost response,
and if you delay 0.1 seconds to send request, it's work fine. Does any one can explian this?
At WWDC 2015 Apple announced two major enhancements to the Network Extension framework:
Network Extension providers — These are app extensions that let you insert your code at various points within the networking stack, including:
Packet tunnels via NEPacketTunnelProvider
App proxies via NEAppProxyProvider
Content filters via NEFilterDataProvider and NEFilterControlProvider
Hotspot Helper (NEHotspotHelper) — This allows you to create an app that assists the user in navigating a hotspot (a Wi-Fi network where the user must interact with the network in order to get access to the wider Internet).
Originally, using any of these facilities required authorisation from Apple. Specifically, you had to apply for, and be granted access to, a managed capability. In Nov 2016 this policy changed for Network Extension providers. Any developer can now use the Network Extension provider capability like they would any other capability.
There is one exception to this rule: Network Extension app push providers, introduced by iOS 14 in 2020, still requires that Apple authorise the use of a managed capability. To apply for that, follow the link in Local push connectivity.
Also, the situation with Hotspot Helpers remains the same: Using a Hotspot Helper, requires that Apple authorise that use via a managed capability. To apply for that, follow the link in Hotspot helper.
IMPORTANT Pay attention to this quote from the documentation:
NEHotspotHelper is only useful for hotspot integration. There are
both technical and business restrictions that prevent it from being
used for other tasks, such as accessory integration or Wi-Fi based
location.
The rest of this document answers some frequently asked questions about the Nov 2016 change.
#1 — Has there been any change to the OS itself?
No, this change only affects the process by which you get the capabilities you need in order to use existing Network Extension framework facilities. Previously these were managed capabilities, meaning their use was authorised by Apple. Now, except for app push providers and Hotspot Helper, you can enable the necessary capabilities using Xcode’s Signing & Capabilities editor or the Developer website.
IMPORTANT Some Network Extension providers have other restrictions on their use. For example, a content filter can only be used on a supervised device. These restrictions are unchanged. See TN3134 Network Extension provider deployment for the details.
#2 — How exactly do I enable the Network Extension provider capability?
In the Signing & Capabilities editor, add the Network Extensions capability and then check the box that matches the provider you’re creating.
In the Certificates, Identifiers & Profiles section of the Developer website, when you add or edit an App ID, you’ll see a new capability listed, Network Extensions. Enable that capability in your App ID and then regenerate the provisioning profiles based on that App ID.
A newly generated profile will include the com.apple.developer.networking.networkextension entitlement in its allowlist; this is an array with an entry for each of the supported Network Extension providers. To confirm that this is present, dump the profile as shown below.
$ security cms -D -i NETest.mobileprovision
…
<plist version="1.0">
<dict>
…
<key>Entitlements</key>
<dict>
<key>com.apple.developer.networking.networkextension</key>
<array>
<string>packet-tunnel-provider</string>
<string>content-filter-provider</string>
<string>app-proxy-provider</string>
… and so on …
</array>
…
</dict>
…
</dict>
</plist>
#3 — I normally use Xcode’s Signing & Capabilities editor to manage my entitlements. Do I have to use the Developer website for this?
No. Xcode 11 and later support this capability in the Signing & Capabilities tab of the target editor (r. 28568128 ).
#4 — Can I still use Xcode’s “Automatically manage signing” option?
Yes. Once you modify your App ID to add the Network Extension provider capability, Xcode’s automatic code signing support will include the entitlement in the allowlist of any profiles that it generates based on that App ID.
#5 — What should I do if I previously applied for the Network Extension provider managed capability and I’m still waiting for a reply?
Consider your current application cancelled, and use the new process described above.
#6 — What should I do if I previously applied for the Hotspot Helper managed capability and I’m still waiting for a reply?
Apple will continue to process Hotspot Helper managed capability requests and respond to you in due course.
#7 — What if I previously applied for both Network Extension provider and Hotspot Helper managed capabilities?
Apple will ignore your request for the Network Extension provider managed capability and process it as if you’d only asked for the Hotspot Helper managed capability.
#8 — On the Mac, can Developer ID apps host Network Extension providers?
Yes, but there are some caveats:
This only works on macOS 10.15 or later.
Your Network Extension provider must be packaged as a system extension, not an app extension.
You must use the *-systemextension values for the Network Extension entitlement (com.apple.developer.networking.networkextension).
For more on this, see Exporting a Developer ID Network Extension.
#9 — After moving to the new process, my app no longer has access to the com.apple.managed.vpn.shared keychain access group. How can I regain that access?
Access to this keychain access group requires another managed capability. If you need that, please open a DTS code-level support request and we’ll take things from there.
IMPORTANT This capability is only necessary if your VPN supports configuration via a configuration profile and needs to access credentials from that profile (as discussed in the Profile Configuration section of the NETunnelProviderManager Reference). Many VPN apps don’t need this facility.
If you were previously granted the Network Extension managed capability (via the process in place before Nov 2016), make sure you mention that; restoring your access to the com.apple.managed.vpn.shared keychain access group should be straightforward in that case.
Share and Enjoy
—
Quinn “The Eskimo!” @ Developer Technical Support @ Apple
let myEmail = "eskimo" + "1" + "@" + "apple.com"
Revision History
2025-11-11 Removed the discussion of TSI assets because those are no longer a thing.
2025-09-12 Adopted the code-level support request terminology. Made other minor editorial changes.
2023-01-11 Added a discussion of Network Extension app push providers. Added a link to Exporting a Developer ID Network Extension. Added a link to TN3134. Made significant editorial changes.
2020-02-27 Fixed the formatting. Updated FAQ#3. Made minor editorial changes.
2020-02-16 Updated FAQ#8 to account for recent changes. Updated FAQ#3 to account for recent Xcode changes. Made other editorial changes.
2016-01-25 Added FAQ#9.
2016-01-6 Added FAQ#8.
2016-11-11 Added FAQ#5, FAQ#6 and FAQ#7.
2016-11-11 First posted.
I would like to test running some Thread Networking code on my MacOS machine:
import ThreadNetwork
let client = THClient()
let bIsPreferredAvailable = await client.isPreferredAvailable()
but I get some errors when trying to create an instance of the THClient class:
Client: -[THClient connectToXPCService]_block_invoke - CTCS XPC Client is interrupted.
Client: -[THClient getConnectionEntitlementValidity]_block_invoke - clientProxyWithErrorHandler Error: Error Domain=NSCocoaErrorDomain Code=4097 "connection to service named com.apple.ThreadNetwork.xpc" UserInfo={NSDebugDescription=connection to service named com.apple.ThreadNetwork.xpc}
Client: -[THClient init] - XPC Client Init Failed
Invalidating XPC connection.
Client: -[THClient getConnectionEntitlementValidity]_block_invoke - clientProxyWithErrorHandler Error: Error Domain=NSCocoaErrorDomain Code=4097 "connection to service named com.apple.ThreadNetwork.xpc" UserInfo={NSDebugDescription=connection to service named com.apple.ThreadNetwork.xpc}
How can I get the code to run?
I'm developing an application using the accessory setup kit (BLE) on iOS 18+. An important aspect of the connection process is being able to find and choose the correct device.
I noticed on iOS 18.2 that I was able to both scroll through the discovered accessories as well as view the advertised name. However, after upgrading to 18.7.2, only a single device is viewable and the advertised name is no longer available. Is there a trigger for this feature that I need to enable or was this "multiple discovery" feature removed? If so, why?
From time to time the subject of NECP grows up, both here on DevForums and in DTS cases. I’ve posted about this before but I wanted to collect those tidbits into single coherent post.
If you have questions or comments, start a new thread in the App & System Services > Networking subtopic and tag it with Network Extension. That way I’ll be sure to see it go by.
Share and Enjoy
—
Quinn “The Eskimo!” @ Developer Technical Support @ Apple
let myEmail = "eskimo" + "1" + "@" + "apple.com"
A Peek Behind the NECP Curtain
NECP stands for Network Extension Control Protocol. It’s a subsystem within the Apple networking stack that controls which programs have access to which network interfaces. It’s vitally important to the Network Extension subsystem, hence the name, but it’s used in many different places. Indeed, a very familiar example of its use is the Settings > Mobile Data [1] user interface on iOS.
NECP has no explicit API, although there are APIs that are offer some insight into its state. Continuing the Settings > Mobile Data example above, there is a little-known API, CTCellularData in the Core Telephony framework, that returns whether your app has access to WWAN.
Despite having no API, NECP is still relevant to developers. The Settings > Mobile Data example is one place where it affects app developers but it’s most important for Network Extension (NE) developers. A key use case for NECP is to prevent VPN loops. When starting an NE provider, the system configures the NECP policy for the NE provider’s process to prevent it from using a VPN interface. This means that you can safely open a network connection inside your VPN provider without having to worry about its traffic being accidentally routed back to you. This is why, for example, an NE packet tunnel provider can use any networking API it wants, including BSD Sockets, to run its connection without fear of creating a VPN loop [1].
One place that NECP shows up regularly is the system log. Next time you see a system log entry like this:
type: debug
time: 15:02:54.817903+0000
process: Mail
subsystem: com.apple.network
category: connection
message: nw_protocol_socket_set_necp_attributes [C723.1.1:1] setsockopt 39 SO_NECP_ATTRIBUTES
…
you’ll at least know what the necp means (-:
Finally, a lot of NECP infrastructure is in the Darwin open source. As with all things in Darwin, it’s fine to poke around and see how your favourite feature works, but do not incorporate any information you find into your product. Stuff you uncover by looking in Darwin is not considered API.
[1] Settings > Cellular Data if you speak American (-:
[2] Network Extension providers can call the createTCPConnection(to:enableTLS:tlsParameters:delegate:) method to create an NWTCPConnection [3] that doesn’t run through the tunnel. You can use that if it’s convenient but you don’t need to use it.
[3] NWTCPConnection is now deprecated, but there are non-deprecated equivalents. For the full story, see NWEndpoint History and Advice.
Revision History
2025-12-12 Replaced “macOS networking stack” with “Apple networking stack” to avoid giving the impression that this is all about macOS. Added a link to NWEndpoint History and Advice. Made other minor editorial changes.
2023-02-27 First posted.
I'm developing in Swift and working on parsing DNS queries. I'm considering using dns_parse_packet, but I noticed that dns_util is deprecated (although it still seems to work in my limited testing).
As far as I know, there isn’t a built-in replacement for this. Is that correct?
On a related note, are there any libraries available for parsing TLS packets—specifically the ClientHello message to extract the Server Name Indication (SNI)—instead of relying on my own implementation?
Related to this post.
Hi all,
I work on a smart product that, for setup, uses a captive portal to allow users to connect and configure the device.
It emits a WiFi network and runs a captive portal - an HTTP server operates at 10.0.0.1, and a DNS server responds to all requests with 10.0.0.1 to direct "any and all" request to the server.
When iOS devices connect, they send a request to captive.apple.com/hotspot-detect.html; if it returns success, that means they're on the internet; if not, the typical behavior in the past has been to assume you're connected to a captive portal and display what's being served.
I serve any requests to /hotspot-detect.html with my captive portal page (index.html).
This has worked reliably on iOS18 for a long time (user selects my products WiFi network, iOS detects portal and opens it).
But almost everyone who's now trying with iOS26 is having the "automatic pop up" behavior fail - usually it says "Error opening page - Hotspot login cannot open the page because the network connection was lost." However, if opening safari and navigating to any URL (or 10.0.0.1) the portal loads - it's just the iOS auto-detect and open that's not working
iOS18 always succeeds; iOS26 always fails.
Anybody have any idea what changes may have been introduced in iOS26 on this front, or anything I can do to help prompt or coax iOS26 into loading the portal? It typically starts reading, but then stops mid-read.
Topic:
App & System Services
SubTopic:
Networking
Hello,
Our app uses Network Extension / Packet Tunnel Provider to establish VPN connections on macOS and iOS.
We have observed that after creating a utun device and adding any IPv4 routes (NEPacketTunnelNetworkSettings.IPv4Settings), the OS automatically adds several host routes via utun to services such as Akamai, Apple Push, etc. These routes appear to correspond to TCP flows that were active at the moment the VPN connection was established. When a particular TCP flow ends, the corresponding host route is deleted. We understand this is likely intended to avoid breaking existing TCP connections.
However, we find the behavior of migrating existing TCP flows to the new utun interface simply because any IPv4 route is added somewhat questionable. This approach would make sense in a "full-tunnel" scenario — for example, when all IPv4 traffic (e.g., 0.0.0.0/0) is routed through the tunnel — but not necessarily in a "split-tunnel" configuration where only specific IPv4 routes are added.
Is there any way to control or influence this behavior?
Would it be possible for FlowDivert to differentiate between full-tunnel and split-tunnel cases, and only preserve existing TCP flows via utun in the full-tunnel scenario?
Thank you.
Hi, I have a problem about "NSPOSIXErrorDomain Code=65 & iOS18 & Xcode 16".
I used 'CocoaAsyncSocket', '~> 7.6.5'. It works fine on iOS 15.2, But it's worried on iOS 18.3.
Before this, broadcasts can be obtained normally。 I had get socket Multicast Networking.
Please help me .
Topic:
App & System Services
SubTopic:
Networking
For important background information, read Extra-ordinary Networking before reading this.
Share and Enjoy
—
Quinn “The Eskimo!” @ Developer Technical Support @ Apple
let myEmail = "eskimo" + "1" + "@" + "apple.com"
Network Interface APIs
Most developers don’t need to interact directly with network interfaces. If you do, read this post for a summary of the APIs available to you.
Before you read this, read Network Interface Concepts.
Interface List
The standard way to get a list of interfaces and their addresses is getifaddrs. To learn more about this API, see its man page.
A network interface has four fundamental attributes:
A set of flags — These are packed into a CUnsignedInt. The flags bits are declared in <net/if.h>, starting with IFF_UP.
An interface type — See Network Interface Type, below.
An interface index — Valid indexes are greater than 0.
A BSD interface name. For example, an Ethernet interface might be called en0. The interface name is shared between multiple network interfaces running over a given hardware interface. For example, IPv4 and IPv6 running over that Ethernet interface will both have the name en0.
WARNING BSD interface names are not considered API. There’s no guarantee, for example, that an iPhone’s Wi-Fi interface is en0.
You can map between the last two using if_indextoname and if_nametoindex. See the if_indextoname man page for details.
An interface may also have address information. If present, this always includes the interface address (ifa_addr) and the network mask (ifa_netmask). In addition:
Broadcast-capable interfaces (IFF_BROADCAST) have a broadcast address (ifa_broadaddr, which is an alias for ifa_dstaddr).
Point-to-point interfaces (IFF_POINTOPOINT) have a destination address (ifa_dstaddr).
Calling getifaddrs from Swift is a bit tricky. For an example of this, see QSocket: Interfaces.
IP Address List
Once you have getifaddrs working, it’s relatively easy to manipulate the results to build a list of just IP addresses, a list of IP addresses for each interface, and so on. QSocket: Interfaces has some Swift snippets that show this.
Interface List Updates
The interface list can change over time. Hardware interfaces can be added and removed, network interfaces come up and go down, and their addresses can change. It’s best to avoid caching information from getifaddrs. If thats unavoidable, use the kNotifySCNetworkChange Darwin notification to update your cache. For information about registering for Darwin notifications, see the notify man page (in section 3).
This notification just tells you that something has changed. It’s up to you to fetch the new interface list and adjust your cache accordingly.
You’ll find that this notification is sometimes posted numerous times in rapid succession. To avoid unnecessary thrashing, debounce it.
While the Darwin notification API is easy to call from Swift, Swift does not import kNotifySCNetworkChange. To fix that, define that value yourself, calling a C function to get the value:
var kNotifySCNetworkChange: UnsafePointer<CChar> {
networkChangeNotifyKey()
}
Here’s what that C function looks like:
extern const char * networkChangeNotifyKey(void) {
return kNotifySCNetworkChange;
}
Network Interface Type
There are two ways to think about a network interface’s type. Historically there were a wide variety of weird and wonderful types of network interfaces. The following code gets this legacy value for a specific BSD interface name:
func legacyTypeForInterfaceNamed(_ name: String) -> UInt8? {
var addrList: UnsafeMutablePointer<ifaddrs>? = nil
let err = getifaddrs(&addrList)
// In theory we could check `errno` here but, honestly, what are gonna
// do with that info?
guard
err >= 0,
let first = addrList
else { return nil }
defer { freeifaddrs(addrList) }
return sequence(first: first, next: { $0.pointee.ifa_next })
.compactMap { addr in
guard
let nameC = addr.pointee.ifa_name,
name == String(cString: nameC),
let sa = addr.pointee.ifa_addr,
sa.pointee.sa_family == AF_LINK,
let data = addr.pointee.ifa_data
else { return nil }
return data.assumingMemoryBound(to: if_data.self).pointee.ifi_type
}
.first
}
The values are defined in <net/if_types.h>, starting with IFT_OTHER.
However, this value is rarely useful because many interfaces ‘look like’ Ethernet and thus have a type of IFT_ETHER.
Network framework has the concept of an interface’s functional type. This is an indication of how the interface fits into the system. There are two ways to get an interface’s functional type:
If you’re using Network framework and have an NWInterface value, get the type property.
If not, call ioctl with a SIOCGIFFUNCTIONALTYPE request. The return values are defined in <net/if.h>, starting with IFRTYPE_FUNCTIONAL_UNKNOWN.
Swift does not import SIOCGIFFUNCTIONALTYPE, so it’s best to write this code in a C:
extern uint32_t functionalTypeForInterfaceNamed(const char * name) {
int fd = socket(AF_INET, SOCK_DGRAM, 0);
if (fd < 0) { return IFRTYPE_FUNCTIONAL_UNKNOWN; }
struct ifreq ifr = {};
strlcpy(ifr.ifr_name, name, sizeof(ifr.ifr_name));
bool success = ioctl(fd, SIOCGIFFUNCTIONALTYPE, &ifr) >= 0;
int junk = close(fd);
assert(junk == 0);
if ( ! success ) { return IFRTYPE_FUNCTIONAL_UNKNOWN; }
return ifr.ifr_ifru.ifru_functional_type;
}
Finally, TN3158 Resolving Xcode 15 device connection issues documents the SIOCGIFDIRECTLINK flag as a specific way to identify the network interfaces uses by Xcode for device connection traffic.
Revision History
2025-12-10 Added info about SIOCGIFDIRECTLINK.
2023-07-19 First posted.
Starting in iOS 26, two notable changes have been made to CallKit, LiveCommunicationKit, and the PushToTalk framework:
As a diagnostic aid, we're introducing new dialogs to warn apps of voip push related issue, for example when they fail to report a call or when when voip push delivery stops. The specific details of that behavior are still being determined and are likely to change over time, however, the critical point here is that these alerts are only intended to help developers debug and improve their app. Because of that, they're specifically tied to development and TestFlight signed builds, so the alert dialogs will not appear for customers running app store builds. The existing termination/crashes will still occur, but the new warning alerts will not appear.
As PushToTalk developers have previously been warned, the last unrestricted PushKit entitlement ("com.apple.developer.pushkit.unrestricted-voip.ptt") has been disabled in the iOS 26 SDK. ALL apps that link against the iOS 26 SDK which receive a voip push through PushKit and which fail to report a call to CallKit will be now be terminated by the system, as the API contract has long specified.
__
Kevin Elliott
DTS Engineer, CoreOS/Hardware
General:
Forums subtopic: App & System Services > Networking
DevForums tag: Network Extension
Network Extension framework documentation
Routing your VPN network traffic article
Filtering traffic by URL sample code
Filtering Network Traffic sample code
TN3120 Expected use cases for Network Extension packet tunnel providers technote
TN3134 Network Extension provider deployment technote
TN3165 Packet Filter is not API technote
Network Extension and VPN Glossary forums post
Debugging a Network Extension Provider forums post
Exporting a Developer ID Network Extension forums post
Network Extension vs ad hoc techniques on macOS forums post
Network Extension Provider Packaging forums post
NWEndpoint History and Advice forums post
Extra-ordinary Networking forums post
Wi-Fi management:
Wi-Fi Fundamentals forums post
TN3111 iOS Wi-Fi API overview technote
How to modernize your captive network developer news post
iOS Network Signal Strength forums post
See also Networking Resources.
Share and Enjoy
—
Quinn “The Eskimo!” @ Developer Technical Support @ Apple
let myEmail = "eskimo" + "1" + "@" + "apple.com"
Most apps perform ordinary network operations, like fetching an HTTP resource with URLSession and opening a TCP connection to a mail server with Network framework. These operations are not without their challenges, but they’re the well-trodden path.
If your app performs ordinary networking, see TN3151 Choosing the right networking API for recommendations as to where to start.
Some apps have extra-ordinary networking requirements. For example, apps that:
Help the user configure a Wi-Fi accessory
Require a connection to run over a specific interface
Listen for incoming connections
Building such an app is tricky because:
Networking is hard in general.
Apple devices support very dynamic networking, and your app has to work well in whatever environment it’s running in.
Documentation for the APIs you need is tucked away in man pages and doc comments.
In many cases you have to assemble these APIs in creative ways.
If you’re developing an app with extra-ordinary networking requirements, this post is for you.
Note If you have questions or comments about any of the topics discussed here, put them in a new thread here on DevForums. Make sure I see it by putting it in the App & System Services > Networking area. And feel free to add tags appropriate to the specific technology you’re using, like Foundation, CFNetwork, Network, or Network Extension.
Links, Links, and More Links
Each topic is covered in a separate post:
The iOS Wi-Fi Lifecycle describes how iOS joins and leaves Wi-Fi networks. Understanding this is especially important if you’re building an app that works with a Wi-Fi accessory.
Network Interface Concepts explains how Apple platforms manage network interfaces. If you’ve got this far, you definitely want to read this.
Network Interface Techniques offers a high-level overview of some of the more common techniques you need when working with network interfaces.
Network Interface APIs describes APIs and core techniques for working with network interfaces. It’s referenced by many other posts.
Running an HTTP Request over WWAN explains why most apps should not force an HTTP request to run over WWAN, what they should do instead, and what to do if you really need that behaviour.
If you’re building an iOS app with an embedded network server, see Showing Connection Information in an iOS Server for details on how to get the information to show to your user so they can connect to your server.
Many folks run into trouble when they try to find the device’s IP address, or other seemingly simple things, like the name of the Wi-Fi interface. Don’t Try to Get the Device’s IP Address explains why these problems are hard, and offers alternative approaches that function correctly in all network environments.
Similarly, folks also run into trouble when trying to get the host name. On Host Names explains why that’s more complex than you might think.
If you’re working with broadcasts or multicasts, see Broadcasts and Multicasts, Hints and Tips.
If you’re building an app that works with a Wi-Fi accessory, see Working with a Wi-Fi Accessory.
If you’re trying to gather network interface statistics, see Network Interface Statistics.
There are also some posts that are not part of this series but likely to be of interest if you’re working in this space:
TN3179 Understanding local network privacy discusses the local network privacy feature.
Calling BSD Sockets from Swift does what it says on the tin, that is, explains how to call BSD Sockets from Swift. When doing weird things with the network, you often find yourself having to use BSD Sockets, and that API is not easy to call from Swift. The code therein is primarily for the benefit of test projects, oh, and DevForums posts like these.
TN3111 iOS Wi-Fi API overview is a critical resource if you’re doing Wi-Fi specific stuff on iOS.
TLS For Accessory Developers tackles the tricky topic of how to communicate securely with a network-based accessory.
A Peek Behind the NECP Curtain discusses NECP, a subsystem that control which programs have access to which network interfaces.
Networking Resources has links to many other useful resources.
Share and Enjoy
—
Quinn “The Eskimo!” @ Developer Technical Support @ Apple
let myEmail = "eskimo" + "1" + "@" + "apple.com"
Revision History
2025-07-31 Added a link to A Peek Behind the NECP Curtain.
2025-03-28 Added a link to On Host Names.
2025-01-16 Added a link to Broadcasts and Multicasts, Hints and Tips. Updated the local network privacy link to point to TN3179. Made other minor editorial changes.
2024-04-30 Added a link to Network Interface Statistics.
2023-09-14 Added a link to TLS For Accessory Developers.
2023-07-23 First posted.
Hi,
We're receiving data via centralManager.centralManager.scanForPeripherals, with no options or filtering (for now), and in the func centralManager(_ central: CBCentralManager, didDiscover peripheral: CBPeripheral, advertisementData: [String : Any], rssi RSSI: NSNumber) callback, we get advertisementData for each bluetooth device found.
But, I know one of my BLE devices is sending an Eddystone TLM payload, which generally is received into the kCBAdvDataServiceData part of the advertisementData dictionary, but, it doesn't show up.
What is happening however (when comparing to other devices that do show that payload), is I've noticed the "isConnectable" part is false, and others have it true. Technically we're not "connecting" as such as we're simply reading passive advertisement data, but does that have any bearing on how CoreBluetooth decides to build up it's AdvertisementData response?
Example (with serviceData; and I know this has Eddystone TLM)
["kCBAdvDataLocalName": FSC-BP105N, "kCBAdvDataRxPrimaryPHY": 1, "kCBAdvDataServiceUUIDs": <__NSArrayM 0x300b71f80>(
FEAA,
FEF5
)
, "kCBAdvDataTimestamp": 773270526.26279, "kCBAdvDataServiceData": {
FFF0 = {length = 11, bytes = 0x36021892dc0d3015aeb164};
FEAA = {length = 14, bytes = 0x20000be680000339ffa229bbce8a};
}, "kCBAdvDataRxSecondaryPHY": 0, "kCBAdvDataIsConnectable": 1]
Vs
This also has Eddystone TLM configured
["kCBAdvDataLocalName": 100FA9FD-7000-1000, "kCBAdvDataIsConnectable": 0, "kCBAdvDataRxPrimaryPHY": 1, "kCBAdvDataRxSecondaryPHY": 0, "kCBAdvDataTimestamp": 773270918.97273]
Any insight would be great to understand if the presence of other flags drive the exposure of ServiceData or not...
Are the network relays introduced in 2023 and
https://developer.apple.com/videos/play/wwdc2023/10002/
the same thing as the Private Relay introduced in 2021?
https://developer.apple.com/videos/play/wwdc2021/10096/
We are considering verifying the relay function, but we are not sure whether they are the same function or different functions.
https://developer.apple.com/documentation/devicemanagement/relay?language=objc
Topic:
App & System Services
SubTopic:
Networking
Esim activation. Assuming I already have card data, I use the universal link https://esimsetup.apple.com/esim_qrcode_provisioning?carddata= to install it.
However, it always ends up in the system Settings app.
The flow: 1. Click the link -> 2. Redirect to Settings -> 3. Show activation dialog.
Is there anyway to make the activation flow stay within the app? I couldn't find any documentation for that.
This is an example from Revolut app, where the whole flow above happens without leaving the app.
For important background information, read Extra-ordinary Networking before reading this.
Share and Enjoy
—
Quinn “The Eskimo!” @ Developer Technical Support @ Apple
let myEmail = "eskimo" + "1" + "@" + "apple.com"
Working with a Wi-Fi Accessory
Building an app that works with a Wi-Fi accessory presents specific challenges. This post discusses those challenges and some recommendations for how to address them.
Note While my focus here is iOS, much of the info in this post applies to all Apple platforms.
IMPORTANT iOS 18 introduced AccessorySetupKit, a framework to simplify the discovery and configuration of an accessory. I’m not fully up to speed on that framework myself, but I encourage you to watch WWDC 2024 Session 10203 Meet AccessorySetupKit and read the framework documentation.
IMPORTANT iOS 26 introduced WiFiAware, a framework for setting up communication with Wi-Fi Aware accessories. Wi-Fi Aware is an industry standard to securely discover, pair, and communicate with nearby devices. This is especially useful for stand-alone accessories (defined below). For more on this framework, watch WWDC 2025 Session 228 Supercharge device connectivity with Wi-Fi Aware and read the framework documentation. For information on how to create a Wi-Fi Aware accessory that works with iPhone, go to Developer > Accessories, download Accessory Design Guidelines for Apple Devices, and review the Wi-Fi Aware chapter.
Accessory Categories
I classify Wi-Fi accessories into three different categories.
A bound accessory is ultimately intended to join the user’s Wi-Fi network. It may publish its own Wi-Fi network during the setup process, but the goal of that process is to get the accessory on to the existing network. Once that’s done, your app interacts with the accessory using ordinary networking APIs.
An example of a bound accessory is a Wi-Fi capable printer.
A stand-alone accessory publishes a Wi-Fi network at all times. An iOS device joins that network so that your app can interact with it. The accessory never provides access to the wider Internet.
An example of a stand-alone accessory is a video camera that users take with them into the field. You might want to write an app that joins the camera’s network and downloads footage from it.
A gateway accessory is one that publishes a Wi-Fi network that provides access to the wider Internet. Your app might need to interact with the accessory during the setup process, but after that it’s useful as is.
An example of this is a Wi-Fi to WWAN gateway.
Not all accessories fall neatly into these categories. Indeed, some accessories might fit into multiple categories, or transition between categories. Still, I’ve found these categories to be helpful when discussing various accessory integration challenges.
Do You Control the Firmware?
The key question here is Do you control the accessory’s firmware? If so, you have a bunch of extra options that will make your life easier. If not, you have to adapt to whatever the accessory’s current firmware does.
Simple Improvements
If you do control the firmware, I strongly encourage you to:
Support IPv6
Implement Bonjour [1]
These two things are quite easy to do — most embedded platforms support them directly, so it’s just a question of turning them on — and they will make your life significantly easier:
Link-local addresses are intrinsic to IPv6, and IPv6 is intrinsic to Apple platforms. If your accessory supports IPv6, you’ll always be able to communicate with it, regardless of how messed up the IPv4 configuration gets.
Similarly, if you support Bonjour, you’ll always be able to find your accessory on the network.
[1] Bonjour is an Apple term for three Internet standards:
RFC 3927 Dynamic Configuration of IPv4 Link-Local Addresses
RFC 6762 Multicast DNS
RFC 6763 DNS-Based Service Discovery
WAC
For a bound accessory, support Wireless Accessory Configuration (WAC). This is a relatively big ask — supporting WAC requires you to join the MFi Program — but it has some huge benefits:
You don’t need to write an app to configure your accessory. The user will be able to do it directly from Settings.
If you do write an app, you can use the EAWiFiUnconfiguredAccessoryBrowser class to simplify your configuration process.
HomeKit
For a bound accessory that works in the user’s home, consider supporting HomeKit. This yields the same onboarding benefits as WAC, and many other benefits as well. Also, you can get started with the HomeKit Open Source Accessory Development Kit (ADK).
Bluetooth LE
If your accessory supports Bluetooth LE, think about how you can use that to improve your app’s user experience. For an example of that, see SSID Scanning, below.
Claiming the Default Route, Or Not?
If your accessory publishes a Wi-Fi network, a key design decision is whether to stand up enough infrastructure for an iOS device to make it the default route.
IMPORTANT To learn more about how iOS makes the decision to switch the default route, see The iOS Wi-Fi Lifecycle and Network Interface Concepts.
This decision has significant implications. If the accessory’s network becomes the default route, most network connections from iOS will be routed to your accessory. If it doesn’t provide a path to the wider Internet, those connections will fail. That includes connections made by your own app.
Note It’s possible to get around this by forcing your network connections to run over WWAN. See Binding to an Interface in Network Interface Techniques and Running an HTTP Request over WWAN. Of course, this only works if the user has WWAN. It won’t help most iPad users, for example.
OTOH, if your accessory’s network doesn’t become the default route, you’ll see other issues. iOS will not auto-join such a network so, if the user locks their device, they’ll have to manually join the network again.
In my experience a lot of accessories choose to become the default route in situations where they shouldn’t. For example, a bound accessory is never going to be able to provide a path to the wider Internet so it probably shouldn’t become the default route. However, there are cases where it absolutely makes sense, the most obvious being that of a gateway accessory.
Acting as a Captive Network, or Not?
If your accessory becomes the default route you must then decide whether to act like a captive network or not.
IMPORTANT To learn more about how iOS determines whether a network is captive, see The iOS Wi-Fi Lifecycle.
For bound and stand-alone accessories, becoming a captive network is generally a bad idea. When the user joins your network, the captive network UI comes up and they have to successfully complete it to stay on the network. If they cancel out, iOS will leave the network. That makes it hard for the user to run your app while their iOS device is on your accessory’s network.
In contrast, it’s more reasonable for a gateway accessory to act as a captive network.
SSID Scanning
Many developers think that TN3111 iOS Wi-Fi API overview is lying when it says:
iOS does not have a general-purpose API for Wi-Fi scanning
It is not.
Many developers think that the Hotspot Helper API is a panacea that will fix all their Wi-Fi accessory integration issues, if only they could get the entitlement to use it.
It will not.
Note this comment in the official docs:
NEHotspotHelper is only useful for hotspot integration. There are both technical and business restrictions that prevent it from being used for other tasks, such as accessory integration or Wi-Fi based location.
Even if you had the entitlement you would run into these technical restrictions. The API was specifically designed to support hotspot navigation — in this context hotspots are “Wi-Fi networks where the user must interact with the network to gain access to the wider Internet” — and it does not give you access to on-demand real-time Wi-Fi scan results.
Many developers look at another developer’s app, see that it’s displaying real-time Wi-Fi scan results, and think there’s some special deal with Apple that’ll make that work.
There is not.
In reality, Wi-Fi accessory developers have come up with a variety of creative approaches for this, including:
If you have a bound accessory, you might add WAC support, which makes this whole issue go away.
In many cases, you can avoid the need for Wi-Fi scan results by adopting AccessorySetupKit.
You might build your accessory with a barcode containing the info required to join its network, and scan that from your app. This is the premise behind the Configuring a Wi-Fi Accessory to Join the User’s Network sample code.
You might configure all your accessories to have a common SSID prefix, and then take advantage of the prefix support in NEHotspotConfigurationManager. See Programmatically Joining a Network, below.
You might have your app talk to your accessory via some other means, like Bluetooth LE, and have the accessory scan for Wi-Fi networks and return the results.
Programmatically Joining a Network
Network Extension framework has an API, NEHotspotConfigurationManager, to programmatically join a network, either temporarily or as a known network that supports auto-join. For the details, see Wi-Fi Configuration.
One feature that’s particularly useful is it’s prefix support, allowing you to create a configuration that’ll join any network with a specific prefix. See the init(ssidPrefix:) initialiser for the details.
For examples of how to use this API, see:
Configuring a Wi-Fi Accessory to Join the User’s Network — It shows all the steps for one approach for getting a non-WAC bound accessory on to the user’s network.
NEHotspotConfiguration Sample — Use this to explore the API in general.
Secure Communication
Users expect all network communication to be done securely. For some ideas on how to set up a secure connection to an accessory, see TLS For Accessory Developers.
Revision History
2025-11-05 Added a link to the Accessory Design Guidelines for Apple Devices.
2025-06-19 Added a preliminary discussion of Wi-Fi Aware.
2024-09-12 Improved the discussion of AccessorySetupKit.
2024-07-16 Added a preliminary discussion of AccessorySetupKit.
2023-10-11 Added the HomeKit section. Fixed the link in Secure Communication to point to TLS For Accessory Developers.
2023-07-23 First posted.