Networking

RSS for tag

Explore the networking protocols and technologies used by the device to connect to Wi-Fi networks, Bluetooth devices, and cellular data services.

Networking Documentation

Posts under Networking subtopic

Post

Replies

Boosts

Views

Activity

Intercept local connections with NETransparentProxyProvider
I am trying to intercept localhost connections within NETransparentProxyProvider system extension. As per NENetworkRule documentation If the address is a wildcard address (0.0.0.0 or ::) then the rule will match all destinations except for loopback (127.0.0.1 or ::1). To match loopback traffic set the address to the loopback address. I tried to add NWHostEndpoint *localhostv4 = [NWHostEndpoint endpointWithHostname:@"127.0.0.1" port:@""]; NENetworkRule *localhostv4Rule = [[NENetworkRule alloc] initWithDestinationNetwork:localhostv4 prefix:32 protocol:NENetworkRuleProtocolAny]; in the include network rules. I tried several variations of this rule like port 0, prefix 0 and some others. But the provider disregards the rule and the never receives any traffic going to localhost on any port. Is there any other configuration required to receive localhost traffic in NETransparentProxyProvider?
1
0
144
Jul ’25
NEHotspotNetwork headaches
I'm trying to use NEHotspotNetwork to configure an IoT. I've read all the issues that have plagued other developers when using this framework, and I was under the impression that bugs were filed and fixed. Here are my issues in hopes that someone can catch my bug, or has finally figured this out and it's not a bug in the framework with no immediate fix on the horizon. If I use the following code: let config = NEHotspotConfiguration(ssid: ssid) config.joinOnce = true KiniStatusBanner.shared.show(text: "Connecting to Kini", in: presentingVC.view) NEHotspotConfigurationManager.shared.apply(config) { error in DispatchQueue.main.async { if let nsError = error as NSError?, nsError.domain == NEHotspotConfigurationErrorDomain, nsError.code == NEHotspotConfigurationError.alreadyAssociated.rawValue { print("Already connected to \(self.ssid)") KiniStatusBanner.shared.dismiss() self.presentCaptivePortal(from: presentingVC, activationCode: activationCode) } else if let error = error { // This doesn't happen print("❌ Failed to connect: \(error.localizedDescription)") KiniStatusBanner.shared.update(text: "Failed to Connect to Kini. Try again later.") KiniStatusBanner.shared.dismiss(after: 2.5) } else { // !!!! Most often, this is the path the code takes NEHotspotNetwork.fetchCurrent { current in if let ssid = current?.ssid, ssid == self.ssid { log("✅✅ 1st attempt: connected to \(self.ssid)") KiniStatusBanner.shared.dismiss() self.presentCaptivePortal(from: presentingVC, activationCode: activationCode) } else { // Dev forums talked about giving things a bit of time to settle and then try again DispatchQueue.main.asyncAfter(deadline: .now() + 2) { NEHotspotNetwork.fetchCurrent { current in if let ssid = current?.ssid, ssid == self.ssid { log("✅✅✅ 2nd attempt: connected to \(self.ssid)") KiniStatusBanner.shared.dismiss() self.presentCaptivePortal(from: presentingVC, activationCode: activationCode) } else { log("❌❌❌ 2nd attempt: Failed to connect: \(self.ssid)") KiniStatusBanner.shared.update(text: "Could not join Kini network. Try again.") KiniStatusBanner.shared.dismiss(after: 2.5) self.cleanupHotspot() DispatchQueue.main.asyncAfter(deadline: .now() + 2) { print("cleanup again") self.cleanupHotspot() } } } } log("❌❌ 1st attempt: Failed to connect: \(self.ssid)") KiniStatusBanner.shared.update(text: "Could not join Kini network. Try again.") KiniStatusBanner.shared.dismiss(after: 2.5) self.cleanupHotspot() } As you can see, one can't just use NEHotspotConfigurationManager.shared.apply and has to double-check to make sure that it actually succeeds, by checking to see if the SSID desired, matches the one that the device is using. Ok, but about 50% of the time, the call to NEHotspotNetwork.fetchCurrent gives me this error: NEHotspotNetwork nehelper sent invalid result code [1] for Wi-Fi information request Well, there is a workaround for that randomness too. At some point before calling this code, one can: let locationManager = CLLocationManager() locationManager.requestWhenInUseAuthorization() That eliminates the NEHotspotNetwork nehelper sent invalid result code [1] for Wi-Fi information request BUT... three issues. The user is presented with an authorization alert: Allow "Kini" to use your location? This app needs access to you Wi-Fi name to connect to your Kini device. Along with a map with a location pin on it. This gives my users a completely wrong impression, especially for a device/app where we promise users not to track their location. They actually see a map with their location pinned on it, implying something that would freak out anyone who was expecting no tracking. I understand why an authorization is normally required, but since all we are getting is our own IoT's SSID, there should be no need for an authorization for this, and no map associated with the request. Again, they are accessing my IoT's network, NOT their home/location Wi-Fi SSID. My app already knows and specifies that network, and all I am trying to do is to work around a bug that makes it look like I have a successful return from NEHotspotConfigurationManager.shared.apply() when in fact the network I was looking for wasn't even on. Not only do I get instances where the network doesn't connect, and result codes show no errors, but I also get instances where I get an alert that says that the network is unreachable, yet my IoT shows that the app is connected to its Wi-Fi. On the iOS device, I go to the Wi-Fi settings, and see that I am on the IoT's network. So basically, sometimes I connect, but the frameworks says that there is no connection, and sometimes it reports a connection when there is none. As you can see in the code, I call cleanupHotspot() to make the iOS device get off of my temp Wi-Fi SSID. This is the code: func cleanupHotspot() { NEHotspotConfigurationManager.shared.removeConfiguration(forSSID: ssid) } That code gets called by the above code when things aren't as I expect and need to cleanup. And I also call it when the user dismisses the viewcontroller that is attempting to make the connection. It doesn't always work. I get stuck on the tempo SSID, unless I go through this whole thing again: try to make the connection again, this time it succeeds quickly, and then I can disconnect. Any ideas? I'm on iOS18.5, and have tried this on multiple iPhones including 11, 13 and 16.
3
0
160
Nov ’25
Real-Time WatchConnectivity Sync Not Working Between iPhone and Apple Watch
Hi everyone, I'm building a health-focused iOS and watchOS app that uses WatchConnectivity to sync real-time heart rate and core body temperature data from iPhone to Apple Watch. While the HealthKit integration works correctly on the iPhone side, I'm facing persistent issues with WatchConnectivity — the data either doesn't arrive on the Watch, or session(_:didReceiveMessage:) never gets triggered. Here's the setup: On iPhone: Using WCSession.default.sendMessage(_:replyHandler:errorHandler:) to send real-time values every few seconds. On Apple Watch: Implemented WCSessionDelegate, and session(_:didReceiveMessage:) is supposed to update the UI. Both apps have WCSession.isSupported() checks, activate the session, and assign delegates correctly. The session state shows isPaired = true and isWatchAppInstalled = true. Bluetooth and Wi-Fi are on, both devices are unlocked and nearby. Despite all this, the Watch never receives messages in real-time. Sometimes, data comes through in bulk much later or not at all. I've double-checked Info.plist configurations and made sure background modes include "Uses Bluetooth LE accessories" and "Background fetch" where appropriate. I would really appreciate guidance on: Best practices for reliable, low-latency message delivery with WatchConnectivity. Debugging steps or sample code to validate message transmission and reception. Any pitfalls related to UI updates from the delegate method. Happy to share further details. Thanks in advance!
1
0
236
Jun ’25
Extra-ordinary Networking
Most apps perform ordinary network operations, like fetching an HTTP resource with URLSession and opening a TCP connection to a mail server with Network framework. These operations are not without their challenges, but they’re the well-trodden path. If your app performs ordinary networking, see TN3151 Choosing the right networking API for recommendations as to where to start. Some apps have extra-ordinary networking requirements. For example, apps that: Help the user configure a Wi-Fi accessory Require a connection to run over a specific interface Listen for incoming connections Building such an app is tricky because: Networking is hard in general. Apple devices support very dynamic networking, and your app has to work well in whatever environment it’s running in. Documentation for the APIs you need is tucked away in man pages and doc comments. In many cases you have to assemble these APIs in creative ways. If you’re developing an app with extra-ordinary networking requirements, this post is for you. Note If you have questions or comments about any of the topics discussed here, put them in a new thread here on DevForums. Make sure I see it by putting it in the App & System Services > Networking area. And feel free to add tags appropriate to the specific technology you’re using, like Foundation, CFNetwork, Network, or Network Extension. Links, Links, and More Links Each topic is covered in a separate post: The iOS Wi-Fi Lifecycle describes how iOS joins and leaves Wi-Fi networks. Understanding this is especially important if you’re building an app that works with a Wi-Fi accessory. Network Interface Concepts explains how Apple platforms manage network interfaces. If you’ve got this far, you definitely want to read this. Network Interface Techniques offers a high-level overview of some of the more common techniques you need when working with network interfaces. Network Interface APIs describes APIs and core techniques for working with network interfaces. It’s referenced by many other posts. Running an HTTP Request over WWAN explains why most apps should not force an HTTP request to run over WWAN, what they should do instead, and what to do if you really need that behaviour. If you’re building an iOS app with an embedded network server, see Showing Connection Information in an iOS Server for details on how to get the information to show to your user so they can connect to your server. Many folks run into trouble when they try to find the device’s IP address, or other seemingly simple things, like the name of the Wi-Fi interface. Don’t Try to Get the Device’s IP Address explains why these problems are hard, and offers alternative approaches that function correctly in all network environments. Similarly, folks also run into trouble when trying to get the host name. On Host Names explains why that’s more complex than you might think. If you’re working with broadcasts or multicasts, see Broadcasts and Multicasts, Hints and Tips. If you’re building an app that works with a Wi-Fi accessory, see Working with a Wi-Fi Accessory. If you’re trying to gather network interface statistics, see Network Interface Statistics. There are also some posts that are not part of this series but likely to be of interest if you’re working in this space: TN3179 Understanding local network privacy discusses the local network privacy feature. Calling BSD Sockets from Swift does what it says on the tin, that is, explains how to call BSD Sockets from Swift. When doing weird things with the network, you often find yourself having to use BSD Sockets, and that API is not easy to call from Swift. The code therein is primarily for the benefit of test projects, oh, and DevForums posts like these. TN3111 iOS Wi-Fi API overview is a critical resource if you’re doing Wi-Fi specific stuff on iOS. TLS For Accessory Developers tackles the tricky topic of how to communicate securely with a network-based accessory. A Peek Behind the NECP Curtain discusses NECP, a subsystem that control which programs have access to which network interfaces. Networking Resources has links to many other useful resources. Share and Enjoy — Quinn “The Eskimo!” @ Developer Technical Support @ Apple let myEmail = "eskimo" + "1" + "@" + "apple.com" Revision History 2025-07-31 Added a link to A Peek Behind the NECP Curtain. 2025-03-28 Added a link to On Host Names. 2025-01-16 Added a link to Broadcasts and Multicasts, Hints and Tips. Updated the local network privacy link to point to TN3179. Made other minor editorial changes. 2024-04-30 Added a link to Network Interface Statistics. 2023-09-14 Added a link to TLS For Accessory Developers. 2023-07-23 First posted.
0
0
5.6k
Jul ’25
Unable to Find Local Network Devices in Simulator – Permission Issue on M4 Mac, macOS 15.5, Xcode 16.1
Hello, I'm running into an issue while developing an iOS app that requires local network access. I’m using the latest MacBook Air M4 with macOS sequoia 15.5 and Xcode 16.1. In the iOS Simulator, my app fails to discover devices connected to the same local network. I’ve already added the necessary key to the Info.plist: NSLocalNetworkUsageDescription This app needs access to local network devices. When I run the app on a real device and M2 Chip Macbook's simulators, it works fine for local network permission as expected. However, in the M4 Chip Macbook's Simulator: The app can’t find any devices on the local network Bonjour/mDNS seems not to be working as well I’ve tried the following without success: Restarting Simulator and Mac Resetting network settings in Simulator Confirming app permissions under System Settings > Privacy & Security Has anyone else encountered this issue with the new Xcode/macOS combo? Is local network access just broken in the Simulator for now, or is there a workaround? Thanks in advance!
1
0
192
May ’25
XPC Connection with Network Extension fails after upgrade
Hi Team, I have a Network Extension application and UI frontend for it. The UI frontend talks to the Network Extension using XPC, as provided by NEMachServiceName. On M2 machine, The application and XPC connection works fine on clean installation. But, when the application is upgraded, the XPC connection keeps failing. Upgrade steps: PreInstall script kills the running processes, both UI and Network Extension Let installation continue PostInstall script to launch the application after installation complete. Following code is successful to the point of resume from UI application NSXPCInterface *exportedInterface = [NSXPCInterface interfaceWithProtocol:@protocol(IPCUIObject)]; newConnection.exportedInterface = exportedInterface; newConnection.exportedObject = delegate; NSXPCInterface *remoteObjectInterface = [NSXPCInterface interfaceWithProtocol:@protocol(IPCExtObject)]; newConnection.remoteObjectInterface = remoteObjectInterface; self.currentConnection = newConnection; [newConnection resume]; But it fails to get the object id<IPCExtObject> providerProxy = [self.currentConnection remoteObjectProxyWithErrorHandler:^(NSError *registerError) { }]; Please note, this only fails for M2. For M1, this exact code is running fine. Additionally, if I uninstall the application by dropping it in Trash and then installing the newer version, then too, the application works fine.
4
0
936
Dec ’25
Working with a Wi-Fi Accessory
For important background information, read Extra-ordinary Networking before reading this. Share and Enjoy — Quinn “The Eskimo!” @ Developer Technical Support @ Apple let myEmail = "eskimo" + "1" + "@" + "apple.com" Working with a Wi-Fi Accessory Building an app that works with a Wi-Fi accessory presents specific challenges. This post discusses those challenges and some recommendations for how to address them. Note While my focus here is iOS, much of the info in this post applies to all Apple platforms. IMPORTANT iOS 18 introduced AccessorySetupKit, a framework to simplify the discovery and configuration of an accessory. I’m not fully up to speed on that framework myself, but I encourage you to watch WWDC 2024 Session 10203 Meet AccessorySetupKit and read the framework documentation. IMPORTANT iOS 26 introduced WiFiAware, a framework for setting up communication with Wi-Fi Aware accessories. Wi-Fi Aware is an industry standard to securely discover, pair, and communicate with nearby devices. This is especially useful for stand-alone accessories (defined below). For more on this framework, watch WWDC 2025 Session 228 Supercharge device connectivity with Wi-Fi Aware and read the framework documentation. For information on how to create a Wi-Fi Aware accessory that works with iPhone, go to Developer > Accessories, download Accessory Design Guidelines for Apple Devices, and review the Wi-Fi Aware chapter. Accessory Categories I classify Wi-Fi accessories into three different categories. A bound accessory is ultimately intended to join the user’s Wi-Fi network. It may publish its own Wi-Fi network during the setup process, but the goal of that process is to get the accessory on to the existing network. Once that’s done, your app interacts with the accessory using ordinary networking APIs. An example of a bound accessory is a Wi-Fi capable printer. A stand-alone accessory publishes a Wi-Fi network at all times. An iOS device joins that network so that your app can interact with it. The accessory never provides access to the wider Internet. An example of a stand-alone accessory is a video camera that users take with them into the field. You might want to write an app that joins the camera’s network and downloads footage from it. A gateway accessory is one that publishes a Wi-Fi network that provides access to the wider Internet. Your app might need to interact with the accessory during the setup process, but after that it’s useful as is. An example of this is a Wi-Fi to WWAN gateway. Not all accessories fall neatly into these categories. Indeed, some accessories might fit into multiple categories, or transition between categories. Still, I’ve found these categories to be helpful when discussing various accessory integration challenges. Do You Control the Firmware? The key question here is Do you control the accessory’s firmware? If so, you have a bunch of extra options that will make your life easier. If not, you have to adapt to whatever the accessory’s current firmware does. Simple Improvements If you do control the firmware, I strongly encourage you to: Support IPv6 Implement Bonjour [1] These two things are quite easy to do — most embedded platforms support them directly, so it’s just a question of turning them on — and they will make your life significantly easier: Link-local addresses are intrinsic to IPv6, and IPv6 is intrinsic to Apple platforms. If your accessory supports IPv6, you’ll always be able to communicate with it, regardless of how messed up the IPv4 configuration gets. Similarly, if you support Bonjour, you’ll always be able to find your accessory on the network. [1] Bonjour is an Apple term for three Internet standards: RFC 3927 Dynamic Configuration of IPv4 Link-Local Addresses RFC 6762 Multicast DNS RFC 6763 DNS-Based Service Discovery WAC For a bound accessory, support Wireless Accessory Configuration (WAC). This is a relatively big ask — supporting WAC requires you to join the MFi Program — but it has some huge benefits: You don’t need to write an app to configure your accessory. The user will be able to do it directly from Settings. If you do write an app, you can use the EAWiFiUnconfiguredAccessoryBrowser class to simplify your configuration process. HomeKit For a bound accessory that works in the user’s home, consider supporting HomeKit. This yields the same onboarding benefits as WAC, and many other benefits as well. Also, you can get started with the HomeKit Open Source Accessory Development Kit (ADK). Bluetooth LE If your accessory supports Bluetooth LE, think about how you can use that to improve your app’s user experience. For an example of that, see SSID Scanning, below. Claiming the Default Route, Or Not? If your accessory publishes a Wi-Fi network, a key design decision is whether to stand up enough infrastructure for an iOS device to make it the default route. IMPORTANT To learn more about how iOS makes the decision to switch the default route, see The iOS Wi-Fi Lifecycle and Network Interface Concepts. This decision has significant implications. If the accessory’s network becomes the default route, most network connections from iOS will be routed to your accessory. If it doesn’t provide a path to the wider Internet, those connections will fail. That includes connections made by your own app. Note It’s possible to get around this by forcing your network connections to run over WWAN. See Binding to an Interface in Network Interface Techniques and Running an HTTP Request over WWAN. Of course, this only works if the user has WWAN. It won’t help most iPad users, for example. OTOH, if your accessory’s network doesn’t become the default route, you’ll see other issues. iOS will not auto-join such a network so, if the user locks their device, they’ll have to manually join the network again. In my experience a lot of accessories choose to become the default route in situations where they shouldn’t. For example, a bound accessory is never going to be able to provide a path to the wider Internet so it probably shouldn’t become the default route. However, there are cases where it absolutely makes sense, the most obvious being that of a gateway accessory. Acting as a Captive Network, or Not? If your accessory becomes the default route you must then decide whether to act like a captive network or not. IMPORTANT To learn more about how iOS determines whether a network is captive, see The iOS Wi-Fi Lifecycle. For bound and stand-alone accessories, becoming a captive network is generally a bad idea. When the user joins your network, the captive network UI comes up and they have to successfully complete it to stay on the network. If they cancel out, iOS will leave the network. That makes it hard for the user to run your app while their iOS device is on your accessory’s network. In contrast, it’s more reasonable for a gateway accessory to act as a captive network. SSID Scanning Many developers think that TN3111 iOS Wi-Fi API overview is lying when it says: iOS does not have a general-purpose API for Wi-Fi scanning It is not. Many developers think that the Hotspot Helper API is a panacea that will fix all their Wi-Fi accessory integration issues, if only they could get the entitlement to use it. It will not. Note this comment in the official docs: NEHotspotHelper is only useful for hotspot integration. There are both technical and business restrictions that prevent it from being used for other tasks, such as accessory integration or Wi-Fi based location. Even if you had the entitlement you would run into these technical restrictions. The API was specifically designed to support hotspot navigation — in this context hotspots are “Wi-Fi networks where the user must interact with the network to gain access to the wider Internet” — and it does not give you access to on-demand real-time Wi-Fi scan results. Many developers look at another developer’s app, see that it’s displaying real-time Wi-Fi scan results, and think there’s some special deal with Apple that’ll make that work. There is not. In reality, Wi-Fi accessory developers have come up with a variety of creative approaches for this, including: If you have a bound accessory, you might add WAC support, which makes this whole issue go away. In many cases, you can avoid the need for Wi-Fi scan results by adopting AccessorySetupKit. You might build your accessory with a barcode containing the info required to join its network, and scan that from your app. This is the premise behind the Configuring a Wi-Fi Accessory to Join the User’s Network sample code. You might configure all your accessories to have a common SSID prefix, and then take advantage of the prefix support in NEHotspotConfigurationManager. See Programmatically Joining a Network, below. You might have your app talk to your accessory via some other means, like Bluetooth LE, and have the accessory scan for Wi-Fi networks and return the results. Programmatically Joining a Network Network Extension framework has an API, NEHotspotConfigurationManager, to programmatically join a network, either temporarily or as a known network that supports auto-join. For the details, see Wi-Fi Configuration. One feature that’s particularly useful is it’s prefix support, allowing you to create a configuration that’ll join any network with a specific prefix. See the init(ssidPrefix:) initialiser for the details. For examples of how to use this API, see: Configuring a Wi-Fi Accessory to Join the User’s Network — It shows all the steps for one approach for getting a non-WAC bound accessory on to the user’s network. NEHotspotConfiguration Sample — Use this to explore the API in general. Secure Communication Users expect all network communication to be done securely. For some ideas on how to set up a secure connection to an accessory, see TLS For Accessory Developers. Revision History 2025-11-05 Added a link to the Accessory Design Guidelines for Apple Devices. 2025-06-19 Added a preliminary discussion of Wi-Fi Aware. 2024-09-12 Improved the discussion of AccessorySetupKit. 2024-07-16 Added a preliminary discussion of AccessorySetupKit. 2023-10-11 Added the HomeKit section. Fixed the link in Secure Communication to point to TLS For Accessory Developers. 2023-07-23 First posted.
0
0
1.8k
Nov ’25
Network Extension Resources
General: Forums subtopic: App & System Services > Networking DevForums tag: Network Extension Network Extension framework documentation Routing your VPN network traffic article Filtering traffic by URL sample code Filtering Network Traffic sample code TN3120 Expected use cases for Network Extension packet tunnel providers technote TN3134 Network Extension provider deployment technote TN3165 Packet Filter is not API technote Network Extension and VPN Glossary forums post Debugging a Network Extension Provider forums post Exporting a Developer ID Network Extension forums post Network Extension Framework Entitlements forums post Network Extension vs ad hoc techniques on macOS forums post Network Extension Provider Packaging forums post NWEndpoint History and Advice forums post Extra-ordinary Networking forums post Wi-Fi management: Wi-Fi Fundamentals forums post TN3111 iOS Wi-Fi API overview technote How to modernize your captive network developer news post iOS Network Signal Strength forums post See also Networking Resources. Share and Enjoy — Quinn “The Eskimo!” @ Developer Technical Support @ Apple let myEmail = "eskimo" + "1" + "@" + "apple.com"
0
0
3.0k
3w
in-addr.arpa default search domains
Hi, I observed some unexpected behavior and hope that someone can enlighten me as to what this is about: mDNSResponder prepends IP / network based default search domains that are checked before any other search domain. E.g. 0.1.168.192.in-addr.arpa. would be used for an interface with an address in the the 192.168.1.0/24 subnet. This is done for any configured non-link-local IP address. I tried to find any mention of an approach like this in RFCs but couldn't spot anything. Please note that this is indeed a search domain and different from reverse-DNS lookups. Example output of tcpdump for ping devtest: 10:02:13.850802 IP (tos 0x0, ttl 64, id 43461, offset 0, flags [none], proto UDP (17), length 92) 192.168.1.2.52319 &gt; 192.168.1.1.53: 54890+ [1au] A? devtest.0.1.168.192.in-addr.arpa. (64) I was able to identify the code that adds those default IP subnet based search domains but failed to spot any indication as to what this is about: https://github.com/apple-oss-distributions/mDNSResponder/blob/d5029b5/mDNSMacOSX/mDNSMacOSX.c#L4171-L4211 Does anyone here have an ideas as to what this might be about?
1
0
763
Apr ’25
Expected behavior of searchDomains
Based on https://developer.apple.com/documentation/networkextension/nednssettings/searchdomains , we expect the values mentioned in searchDomains to be appended to a single label DNS query. However, we are not seeing this behavior. We have a packetTunnelProvider VPN, where we set searchDomains to a dns suffix (for ex: test.com) and we set matchDomains to applications and suffix (for ex: abc.com and test.com) . When a user tries to access https://myapp , we expect to see a DNS query packet for myapp.test.com . However, this is not happening when matchDomainsNoSearch is set to true. https://developer.apple.com/documentation/networkextension/nednssettings/matchdomainsnosearch When matchDomainsNoSearch is set to false, we see dns queries for myapp.test.com and myapp.abc.com. What is the expected behavior of searchDomains?
3
0
50
22m
TLS for App Developers
Transport Layer Security (TLS) is the most important security protocol on the Internet today. Most notably, TLS puts the S into HTTPS, adding security to the otherwise insecure HTTP protocol. IMPORTANT TLS is the successor to the Secure Sockets Layer (SSL) protocol. SSL is no longer considered secure and it’s now rarely used in practice, although many folks still say SSL when they mean TLS. TLS is a complex protocol. Much of that complexity is hidden from app developers but there are places where it’s important to understand specific details of the protocol in order to meet your requirements. This post explains the fundamentals of TLS, concentrating on the issues that most often confuse app developers. Note The focus of this is TLS-PKI, where PKI stands for public key infrastructure. This is the standard TLS as deployed on the wider Internet. There’s another flavour of TLS, TLS-PSK, where PSK stands for pre-shared key. This has a variety of uses, but an Apple platforms we most commonly see it with local traffic, for example, to talk to a Wi-Fi based accessory. For more on how to use TLS, both TLS-PKI and TLS-PSK, in a local context, see TLS For Accessory Developers. Server Certificates For standard TLS to work the server must have a digital identity, that is, the combination of a certificate and the private key matching the public key embedded in that certificate. TLS Crypto Magic™ ensures that: The client gets a copy of the server’s certificate. The client knows that the server holds the private key matching the public key in that certificate. In a typical TLS handshake the server passes the client a list of certificates, where item 0 is the server’s certificate (the leaf certificate), item N is (optionally) the certificate of the certificate authority that ultimately issued that certificate (the root certificate), and items 1 through N-1 are any intermediate certificates required to build a cryptographic chain of trust from 0 to N. Note The cryptographic chain of trust is established by means of digital signatures. Certificate X in the chain is issued by certificate X+1. The owner of certificate X+1 uses their private key to digitally sign certificate X. The client verifies this signature using the public key embedded in certificate X+1. Eventually this chain terminates in a trusted anchor, that is, a certificate that the client trusts by default. Typically this anchor is a self-signed root certificate from a certificate authority. Note Item N is optional for reasons I’ll explain below. Also, the list of intermediate certificates may be empty (in the case where the root certificate directly issued the leaf certificate) but that’s uncommon for servers in the real world. Once the client gets the server’s certificate, it evaluates trust on that certificate to confirm that it’s talking to the right server. There are three levels of trust evaluation here: Basic X.509 trust evaluation checks that there’s a cryptographic chain of trust from the leaf through the intermediates to a trusted root certificate. The client has a set of trusted root certificates built in (these are from well-known certificate authorities, or CAs), and a site admin can add more via a configuration profile. This step also checks that none of the certificates have expired, and various other more technical criteria (like the Basic Constraints extension). Note This explains why the server does not have to include the root certificate in the list of certificates it passes to the client; the client has to have the root certificate installed if trust evaluation is to succeed. In addition, TLS trust evaluation (per RFC 2818) checks that the DNS name that you connected to matches the DNS name in the certificate. Specifically, the DNS name must be listed in the Subject Alternative Name extension. Note The Subject Alternative Name extension can also contain IP addresses, although that’s a much less well-trodden path. Also, historically it was common to accept DNS names in the Common Name element of the Subject but that is no longer the case on Apple platforms. App Transport Security (ATS) adds its own security checks. Basic X.509 and TLS trust evaluation are done for all TLS connections. ATS is only done on TLS connections made by URLSession and things layered on top URLSession (like WKWebView). In many situations you can override trust evaluation; for details, see Technote 2232 HTTPS Server Trust Evaluation). Such overrides can either tighten or loosen security. For example: You might tighten security by checking that the server certificate was issued by a specific CA. That way, if someone manages to convince a poorly-managed CA to issue them a certificate for your server, you can detect that and fail. You might loosen security by adding your own CA’s root certificate as a trusted anchor. IMPORTANT If you rely on loosened security you have to disable ATS. If you leave ATS enabled, it requires that the default server trust evaluation succeeds regardless of any customisations you do. Mutual TLS The previous section discusses server trust evaluation, which is required for all standard TLS connections. That process describes how the client decides whether to trust the server. Mutual TLS (mTLS) is the opposite of that, that is, it’s the process by which the server decides whether to trust the client. Note mTLS is commonly called client certificate authentication. I avoid that term because of the ongoing industry-wide confusion between certificates and digital identities. While it’s true that, in mTLS, the server authenticates the client certificate, to set this up on the client you need a digital identity, not a certificate. mTLS authentication is optional. The server must request a certificate from the client and the client may choose to supply one or not (although if the server requests a certificate and the client doesn’t supply one it’s likely that the server will then fail the connection). At the TLS protocol level this works much like it does with the server certificate. For the client to provide this certificate it must apply a digital identity, known as the client identity, to the connection. TLS Crypto Magic™ assures the server that, if it gets a certificate from the client, the client holds the private key associated with that certificate. Where things diverge is in trust evaluation. Trust evaluation of the client certificate is done on the server, and the server uses its own rules to decided whether to trust a specific client certificate. For example: Some servers do basic X.509 trust evaluation and then check that the chain of trust leads to one specific root certificate; that is, a client is trusted if it holds a digital identity whose certificate was issued by a specific CA. Some servers just check the certificate against a list of known trusted client certificates. When the client sends its certificate to the server it actually sends a list of certificates, much as I’ve described above for the server’s certificates. In many cases the client only needs to send item 0, that is, its leaf certificate. That’s because: The server already has the intermediate certificates required to build a chain of trust from that leaf to its root. There’s no point sending the root, as I discussed above in the context of server trust evaluation. However, there are no hard and fast rules here; the server does its client trust evaluation using its own internal logic, and it’s possible that this logic might require the client to present intermediates, or indeed present the root certificate even though it’s typically redundant. If you have problems with this, you’ll have to ask the folks running the server to explain its requirements. Note If you need to send additional certificates to the server, pass them to the certificates parameter of the method you use to create your URLCredential (typically init(identity:certificates:persistence:)). One thing that bears repeating is that trust evaluation of the client certificate is done on the server, not the client. The client doesn’t care whether the client certificate is trusted or not. Rather, it simply passes that certificate the server and it’s up to the server to make that decision. When a server requests a certificate from the client, it may supply a list of acceptable certificate authorities [1]. Safari uses this to filter the list of client identities it presents to the user. If you are building an HTTPS server and find that Safari doesn’t show the expected client identity, make sure you have this configured correctly. If you’re building an iOS app and want to implement a filter like Safari’s, get this list using: The distinguishedNames property, if you’re using URLSession The sec_protocol_metadata_access_distinguished_names routine, if you’re using Network framework [1] See the certificate_authorities field in Section 7.4.4 of RFC 5246, and equivalent features in other TLS versions. Self-Signed Certificates Self-signed certificates are an ongoing source of problems with TLS. There’s only one unequivocally correct place to use a self-signed certificate: the trusted anchor provided by a certificate authority. One place where a self-signed certificate might make sense is in a local environment, that is, securing a connection between peers without any centralised infrastructure. However, depending on the specific circumstances there may be a better option. TLS For Accessory Developers discusses this topic in detail. Finally, it’s common for folks to use self-signed certificates for testing. I’m not a fan of that approach. Rather, I recommend the approach described in QA1948 HTTPS and Test Servers. For advice on how to set that up using just your Mac, see TN2326 Creating Certificates for TLS Testing. TLS Standards RFC 6101 The Secure Sockets Layer (SSL) Protocol Version 3.0 (historic) RFC 2246 The TLS Protocol Version 1.0 RFC 4346 The Transport Layer Security (TLS) Protocol Version 1.1 RFC 5246 The Transport Layer Security (TLS) Protocol Version 1.2 RFC 8446 The Transport Layer Security (TLS) Protocol Version 1.3 RFC 4347 Datagram Transport Layer Security RFC 6347 Datagram Transport Layer Security Version 1.2 RFC 9147 The Datagram Transport Layer Security (DTLS) Protocol Version 1.3 Share and Enjoy — Quinn “The Eskimo!” @ Developer Technical Support @ Apple let myEmail = "eskimo" + "1" + "@" + "apple.com" Revision History: 2025-11-21 Clearly defined the terms TLS-PKI and TLS-PSK. 2024-03-19 Adopted the term mutual TLS in preference to client certificate authentication throughout, because the latter feeds into the ongoing certificate versus digital identity confusion. Defined the term client identity. Added the Self-Signed Certificates section. Made other minor editorial changes. 2023-02-28 Added an explanation mTLS acceptable certificate authorities. 2022-12-02 Added links to the DTLS RFCs. 2022-08-24 Added links to the TLS RFCs. Made other minor editorial changes. 2022-06-03 Added a link to TLS For Accessory Developers. 2021-02-26 Fixed the formatting. Clarified that ATS only applies to URLSession. Minor editorial changes. 2020-04-17 Updated the discussion of Subject Alternative Name to account for changes in the 2019 OS releases. Minor editorial updates. 2018-10-29 Minor editorial updates. 2016-11-11 First posted.
0
0
8.2k
Nov ’25
DeviceDiscoveryUI's UIViewControllers are available for Wi-Fi Aware?
HI, I am currently developing an app that utilizes Wi-Fi Aware. According to the Wi-Fi Aware framework examples and the WWDC25 session on Wi-Fi Aware, discovery is handled using DevicePairingView and DevicePicker from the DeviceDiscoveryUI module. However, these SwiftUI views present their connection UI modally when tapped. My app's design requires the ability to control the presentation of this UI programmatically, rather than relying on a user tap. While inspecting the DeviceDiscoveryUI module, I found DDDevicePairingViewController and DDDevicePickerViewController, which appear to be the UIViewController counterparts to the SwiftUI views. The initializer for DDDevicePairingViewController accepts a ListenerProvider, so it seems I can pass the same ListenerProvider instance that is used with the DevicePairingView. However, the initializer for DDDevicePickerViewController requires an NWBrowser.Descriptor, which seems incompatible with the parameters used for the SwiftUI DevicePicker. I have two main questions: (1) Can DDDevicePairingViewController and DDDevicePickerViewController be officially used for Wi-Fi Aware pairing? (2) Are there any plans to provide more customization or programmatic control over the DevicePairingView and DevicePicker (for example, allowing us to trigger their modal presentation programmatically)? Thank you.
0
0
46
Nov ’25
How to test application using Thread networking on MacOS?
I would like to test running some Thread Networking code on my MacOS machine: import ThreadNetwork let client = THClient() let bIsPreferredAvailable = await client.isPreferredAvailable() but I get some errors when trying to create an instance of the THClient class: Client: -[THClient connectToXPCService]_block_invoke - CTCS XPC Client is interrupted. Client: -[THClient getConnectionEntitlementValidity]_block_invoke - clientProxyWithErrorHandler Error: Error Domain=NSCocoaErrorDomain Code=4097 "connection to service named com.apple.ThreadNetwork.xpc" UserInfo={NSDebugDescription=connection to service named com.apple.ThreadNetwork.xpc} Client: -[THClient init] - XPC Client Init Failed Invalidating XPC connection. Client: -[THClient getConnectionEntitlementValidity]_block_invoke - clientProxyWithErrorHandler Error: Error Domain=NSCocoaErrorDomain Code=4097 "connection to service named com.apple.ThreadNetwork.xpc" UserInfo={NSDebugDescription=connection to service named com.apple.ThreadNetwork.xpc} How can I get the code to run?
0
0
255
Mar ’25
How to add more cipher suites
I want to add more cipher suites. I use NWConnection to make a connection. Before I use sec_protocol_options_append_tls_ciphersuite method to add more cipher suites, I found that Apple provided 20 cipher suites shown in the client hello packet. But after I added three more cipher suites, I found that nothing changed, and still original 20 cipher suites shown in the client hello packet when I made a new connection. The following is the code about connection. I want to add three more cipher suites: tls_ciphersuite_t.ECDHE_ECDSA_WITH_AES_128_CBC_SHA256, tls_ciphersuite_t.ECDHE_ECDSA_WITH_AES_256_CBC_SHA384, tls_ciphersuite_t.ECDHE_RSA_WITH_AES_256_CBC_SHA384 Can you give me some advice about how to add more cipher suites? Thanks. By the way, I working on a MacOS app. Xcode version: 16 MacOS version: 15.6
1
0
173
Dec ’25
apple-app-site-association file 404 problem
We put the apple-app-site-association file at https://ourdomain.com.tr/.well-known/apple-app-site-association. When we send a request to url, we get 200 response code every time and we can see the file. But sometimes when we try to access https://app-site-association.cdn-apple.com/a/v1/ourdomain.com.tr url with browser or CMD tool, we are facing with 404 response code. There isn't any ip adress filter in our systems and we tried using vpn for sending same request from different locations(america and europe) but nothing changed. In addition, can anyone provide the ip list of apple cdn servers to check the F5 Load balancer WAF logs? CMD output: C:\Users\Name>curl -Lv https://app-site-association.cdn-apple.com/a/v1/ourdomain.com.tr Host app-site-association.cdn-apple.com:443 was resolved. IPv6: (none) IPv4: 17.253.122.197, 17.253.15.210, 17.253.122.196, 17.253.107.201, 17.253.57.203, 17.253.15.198, 17.253.57.200 Trying 17.253.122.197:443... Connected to app-site-association.cdn-apple.com (17.253.122.197) port 443 schannel: disabled automatic use of client certificate ALPN: curl offers http/1.1 ALPN: server accepted http/1.1 using HTTP/1.x GET /a/v1/ourdomain.com HTTP/1.1 Host: app-site-association.cdn-apple.com User-Agent: curl/8.9.1 Accept: / Request completely sent off schannel: remote party requests renegotiation schannel: renegotiating SSL/TLS connection schannel: SSL/TLS connection renegotiated < HTTP/1.1 404 Not Found < Apple-Failure-Details: {"cause":"context deadline exceeded (Client.Timeout exceeded while awaiting headers)"} < Apple-Failure-Reason: SWCERR00301 Timeout < Apple-From: https://ourdomain.com.tr/.well-known/apple-app-site-association < Apple-Try-Direct: true < Cache-Control: max-age=3600,public < Content-Length: 10 < Content-Type: text/plain; charset=utf-8 < Date: Mon, 14 Apr 2025 12:52:04 GMT < Expires: Mon, 14 Apr 2025 12:52:14 GMT < Age: 1770 < Via: http/1.1 uklon5-vp-vst-004.ts.apple.com (acdn/268.14469), https/1.1 uklon5-vp-vfe-002.ts.apple.com (acdn/268.14469), http/1.1 frmrs1-edge-mx-008.ts.apple.com (acdn/268.14469), http/1.1 frmrs1-edge-fx-005.ts.apple.com (acdn/268.14469) < X-Cache: hit-fresh, hit-stale, hit-fresh, hit-fresh < CDNUUID: 9e72cf99-1503-4644-9ea3-173328a25c94-31496306226 < Connection: keep-alive < Not Found Connection #0 to host app-site-association.cdn-apple.com left intact
3
0
249
Apr ’25
Apps do not trigger pop-up asking for permission to access local network on macOS Sequoia/Tahoe
We are having an issue with the Local Network permission pop-up not getting triggered for our apps that need to communicate with devices via local network interfaces/addresses. As we understand, apps using UDP should trigger this, causing macOS to prompt for access, or, if denied, fail to connect. However, we are facing issues with macOS not prompting this popup at all. Here are important and related points: Our application is packaged as a .app package and distributed independently (not on the App Store). The application controls hardware that we manufacture. In order to find the hardware on the network, we send a UDP broadcast with a message for our hardware on the local network, and the hardware responds with a message back. However, the popup (to ask for permission) never shows up. The application is not able to find the hardware device. It is interesting to note that data is still sent out to the network (without the popup) but we receive back the wrong data. The behaviour is consistent macOS Sequoia (and above) with both Apple And Intel silicon. Workarounds that have been tried: Manual Authorization: One solution suggested in various blogs was to go to "Settings → Privacy and Security-> Local network", find your application and grant access. However, the application never shows up in the list here. Firewall: No difference is seen in behaviour with firewall being ON OR OFF. Setting NSLocalNetworkUsageDescription: We have also tried setting the Info.plist adding the NSLocalNetworkUsageDescription with a meaningful string and updating the NSBonjourServices. Running Via terminal (WORKS): Running the application via terminal sees no issues. The application runs correctly and is able to send UDP and receive correct data (and find the devices on the network). But this is not an appropriate solution. How can we get this bug/issue fixed in macOS Sequoia (and above)? Are there any other solutions/workarounds that we can try on our end?
4
0
129
17h
macos 15.3.x local network restrictions leading to EHOSTUNREACH "No route to host"
Continuing with my investigations of several issues that we have been noticing in our testing of the JDK with macosx 15.x, I have now narrowed down at least 2 separate problems for which I need help. For a quick background, starting with macosx 15.x several networking related tests within the JDK have started failing in very odd and hard to debug ways in our internal lab. Reading through the macos docs and with help from others in these forums, I have come to understand that a lot of these failures are to do with the new restrictions that have been placed for "Local Network" operations. I have read through https://developer.apple.com/documentation/technotes/tn3179-understanding-local-network-privacy and I think I understand the necessary background about these restrictions. There's more than one issue in this area that I will need help with, so I'll split them out into separate topics in this forum. That above doc states: macOS 15.1 fixed a number of local network privacy bugs. If you encounter local network privacy problems on macOS 15.0, retest on macOS 15.1 or later. We did have (and continue to have) 15.0 and 15.1 macos instances within our lab which are impacted by these changes. They too show several networking related failures. However, I have decided not to look into those systems and instead focus only on 15.3.1. People might see unexpected behavior in System Settings > Privacy & Security if they have multiple versions of the same app installed (FB15568200). This feedback assistant issue and several others linked in these documentations are inaccessible (even when I login with my existing account). I think it would be good to have some facility in the feedback assistant tool/site to make such issues visible (even if read-only) to be able to watch for updates to those issues. So now coming to the issue. Several of the networking tests in the JDK do mulicasting testing (through BSD sockets API) in order to test the Java SE multicasting socket API implementations. One repeated failure we have been seeing in our labs is an exception with the message "No route to host". It shows up as: Process id: 58700 ... java.net.NoRouteToHostException: No route to host at java.base/sun.nio.ch.DatagramChannelImpl.send0(Native Method) at java.base/sun.nio.ch.DatagramChannelImpl.sendFromNativeBuffer(DatagramChannelImpl.java:914) at java.base/sun.nio.ch.DatagramChannelImpl.send(DatagramChannelImpl.java:871) at java.base/sun.nio.ch.DatagramChannelImpl.send(DatagramChannelImpl.java:798) at java.base/sun.nio.ch.DatagramChannelImpl.blockingSend(DatagramChannelImpl.java:857) at java.base/sun.nio.ch.DatagramSocketAdaptor.send(DatagramSocketAdaptor.java:178) at java.base/java.net.DatagramSocket.send(DatagramSocket.java:593) (this is just one example stacktrace from java program) That "send0" is implemented by the JDK by invoking the sendto() system call. In this case, the sendto() is returning a EHOSTUNREACH error which is what is then propagated to the application. The forum text editor doesn't allow me to post long text, so I'm going to post the rest of this investigation and logs as a reply.
9
0
710
Mar ’25
Local network request blocked in Safari but working in Chrome
For Local network access, Chrome prompts the user to allow access and adds it to Settings --> Privacy & Security --> Local Network. However, for Safari, no prompt appears. How do I force Safari to authorise these local network access requests if it won't trigger the permission dialogue? Is there a specific WKWebView configuration or Safari-specific header required to satisfy this security check?
1
0
473
4w
Network Extension Unexpectedly Terminated by iOS
We are experiencing an issue where our iOS app’s network extension (acting as a VPN) is being unexpectedly terminated by the operating system. The termination appears identical to a user-initiated stop, as the extension receives the following call: NEProviderStopReasonUserInitiated. The issue occurs sporadically but can happen 10–20 times per day on devices with less than 10% free storage. On one affected device, opening the Camera app (or using the camera within another app like WhatsApp) consistently triggers the issue, making it easily reproducible. Memory consumption does not seem to be the cause—the extension is stopped while using only ~10MB of memory, well below the 50MB limit. We noticed a pattern related to swap usage: • On affected devices, the “Swap Used” column shows very low values (a few MB). • On unaffected devices, swap usage is significantly higher (hundreds of MB). • This is the only clear difference we’ve observed. The issue occurs across different device models and iOS versions (18.2.1 and 17.6.1). It also happens across different app builds (compiled with Xcode 15.x and Xcode 16.x). We found a similar report on the Apple Developer Forums: 🔗 https://developer.apple.com/forums/thread/108149 Has anyone else encountered this behavior with Network Extensions? Could low swap usage or system resource constraints be a factor? Any suggestions for debugging or potential workarounds would be greatly appreciated.
2
0
304
Feb ’25
On FTP
Questions about FTP crop up from time-to-time here on DevForums. In most cases I write a general “don’t use FTP” response, but I don’t have time to go into all the details. I’ve created this post as a place to collect all of those details, so I can reference them in other threads. IMPORTANT Apple’s official position on FTP is: All our FTP APIs have been deprecated, and you should avoid using deprecated APIs. Apple has been slowly removing FTP support from the user-facing parts of our system. The most recent example of this is that we removed the ftp command-line tool in macOS 10.13. You should avoid the FTP protocol and look to adopt more modern alternatives. The rest of this post is an informational explanation of the overall FTP picture. This post is locked so I can keep it focused. If you have questions or comments, please do create a new thread in the App & System Services > Networking subtopic and I’ll respond there. Don’t Use FTP FTP is a very old and very crufty protocol. Certain things that seem obvious to us now — like being able to create a GUI client that reliably shows a directory listing in a platform-independent manner — aren’t possible to do in FTP. However, by far the biggest problem with FTP is that it provides no security [1]. Specifically, the FTP protocol: Provides no on-the-wire privacy, so anyone can see the data you transfer Provides no client-authenticates-server authentication, so you have no idea whether you’re talking to the right server Provides no data integrity, allowing an attacker to munge your data in transit Transfers user names and passwords in the clear Using FTP for anonymous downloads may be acceptable (see the explanation below) but most other uses of FTP are completely inappropriate for the modern Internet. IMPORTANT You should only use FTP for anonymous downloads if you have an independent way to check the integrity of the data you’ve downloaded. For example, if you’re downloading a software update, you could use code signing to check its integrity. If you don’t check the integrity of the data you’ve downloaded, an attacker could substitute a malicious download instead. This would be especially bad in, say, the software update case. These fundamental problems with the FTP protocol mean that it’s not a priority for Apple. This is reflected in the available APIs, which is the subject of the next section. FTP APIs Apple provides two FTP APIs: All Apple platforms provide FTP downloads via URLSession. Most Apple platforms (everything except watchOS) support CFFTPStream, which allows for directory listings, downloads, uploads, and directory creation. All of these FTP APIs are now deprecated: URLSession was deprecated for the purposes of FTP in the 2022 SDKs (macOS 13, iOS 16, iPadOS 16, tvOS 16, watchOS 9) [2]. CFFTPStream was deprecated in the 2016 SDKs (macOS 10.11, iOS 9, iPadOS 9, tvOS 9). CFFTPStream still works about as well as it ever did, which is not particularly well. Specifically: There is at least one known crashing bug (r. 35745763), albeit one that occurs quite infrequently. There are clear implementation limitations — like the fact that CFFTPCreateParsedResourceListing assumes a MacRoman text encoding (r. 7420589) — that won’t be fixed. If you’re looking for an example of how to use these APIs, check out SimpleFTPSample. Note This sample hasn’t been updated since 2013 and is unlikely to ever be updated given Apple’s position on FTP. The FTP support in URLSession has significant limitations: It only supports FTP downloads; there’s no support for uploads or any other FTP operations. It doesn’t support resumable FTP downloads [3]. It doesn’t work in background sessions. That prevents it from running FTP downloads in the background on iOS. It’s only supported in classic loading mode. See the usesClassicLoadingMode property and the doc comments in <Foundation/NSURLSession.h>. If Apple’s FTP APIs are insufficient for your needs, you’ll need to write or acquire your own FTP library. Before you do that, however, consider switching to an alternative protocol. After all, if you’re going to go to the trouble of importing a large FTP library into your code base, you might as well import a library for a better protocol. The next section discusses some options in this space. Alternative Protocols There are numerous better alternatives to FTP: HTTPS is by far the best alternative to FTP, offering good security, good APIs on Apple platforms, good server support, and good network compatibility. Implementing traditional FTP operations over HTTPS can be a bit tricky. One possible way forward is to enable DAV extensions on the server. FTPS is FTP over TLS (aka SSL). While FTPS adds security to the protocol, which is very important, it still inherits many of FTP’s other problems. Personally I try to avoid this protocol. SFTP is a file transfer protocol that’s completely unrelated to FTP. It runs over SSH, making it a great alternative in many of the ad hoc setups that traditionally use FTP. Apple doesn’t have an API for either FTPS or SFTP, although on macOS you may be able to make some headway by invoking the sftp command-line tool. Share and Enjoy — Quinn “The Eskimo!” @ Developer Technical Support @ Apple let myEmail = "eskimo" + "1" + "@" + "apple.com" [1] In another thread someone asked me about FTP’s other problems, those not related to security, so let’s talk about that. One of FTP’s implicit design goals was to provide cross-platform support that exposes the target platform. You can think of FTP as being kinda like telnet. When you telnet from Unix to VMS, it doesn’t aim to abstract away VMS commands, so that you can type Unix commands at the VMS prompt. Rather, you’re expected to run VMS commands. FTP is (a bit) like that. This choice made sense back when the FTP protocol was invented. Folks were expecting to use FTP via a command-line client, so there was a human in the loop. If they ran a command and it produced VMS-like output, that was fine because they knew that they were FTPing into a VMS machine. However, most users today are using GUI clients, and this design choice makes it very hard to create a general GUI client for FTP. Let’s consider the simple problem of getting the contents of a directory. When you send an FTP LIST command, the server would historically run the platform native directory list command and pipe the results back to you. To create a GUI client you have to parse that data to extract the file names. Doing that is a serious challenge. Indeed, just the first step, working out the text encoding, is a challenge. Many FTP servers use UTF-8, but some use ISO-Latin-1, some use other standard encodings, some use Windows code pages, and so on. I say “historically” above because there have been various efforts to standardise this stuff, both in the RFCs and in individual server implementations. However, if you’re building a general client you can’t rely on these efforts. After all, the reason why folks continue to use FTP is because of it widespread support. [2] To quote the macOS 13 Ventura Release Notes: FTP is deprecated for URLSession and related APIs. Please adopt modern secure networking protocols such as HTTPS. (92623659) [3] Although you can implement resumable downloads using the lower-level CFFTPStream API, courtesy of the kCFStreamPropertyFTPFileTransferOffset property. Revision History 2025-10-06 Explained that URLSession only supports FTP in classic loading mode. Made other minor editorial changes. 2024-04-15 Added a footnote about FTP’s other problems. Made other minor editorial changes. 2022-08-09 Noted that the FTP support in URLSession is now deprecated. Made other minor editorial changes. 2021-04-06 Fixed the formatting. Fixed some links. 2018-02-23 First posted.
0
0
5.7k
Oct ’25